Biomechanics and Modeling in Mechanobiology

, Volume 9, Issue 2, pp 225–235

A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells

Original Paper
  • 339 Downloads

Abstract

Organized collagen fibrils form complex networks that introduce strong anisotropic and highly nonlinear attributes into the constitutive response of human eye tissues. Physiological adaptation of the collagen network and the mechanical condition within biological tissues are complex and mutually dependent phenomena. In this contribution, a computational model is presented to investigate the interaction between the collagen fibril architecture and mechanical loading conditions in the corneo-scleral shell. The biomechanical properties of eye tissues are derived from the single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continuous re-orientation of preferred fibril orientations and a continuous adaptation of the fibril dispersion. The presented approach is applied to a numerical human eye model considering the cornea and sclera. The predicted fibril morphology correlates well with experimental observations from X-ray scattering data.

Keywords

Remodeling Constitutive modeling Crimped collagen fibrils Fiber distribution Cornea Sclera Finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10237_2009_173_MOESM1_ESM.pdf (6.8 mb)
ESM 1 (PDF 7,014 kb)

References

  1. Aghamohammadzadeh H, Newton R, Meek K (2004) X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12: 249–256Google Scholar
  2. Anderson K, Elsheik A, Newson T (2003) Modelling the biomechanical effect of increasing intraocullar pressure on the porcine cornea. In: 16th ASCE Engineering Mechanics Conference. University of Washington, SeattleGoogle Scholar
  3. Andreo R, Farrell R (1982) Corneal small-angle light-scattering theory: Wavy fibril models. J Opt Soc Am 72: 1479–1492CrossRefGoogle Scholar
  4. Başar Y, Grytz R (2004) Incompressibility at large strains and finite-element implementation. Acta Mech 168: 75–101MATHCrossRefGoogle Scholar
  5. Başar Y, Itskov M, Eckstein A (2000) Composite laminates: Nonlinear interlaminar stress analysis by multi-layer shell elements. Comput Methods Appl Mech Eng 185: 367–397MATHCrossRefGoogle Scholar
  6. Başar Y, Weichert D (2000) Nonlinear continuum mechanics of solids. Springer, BerlinMATHGoogle Scholar
  7. Büchter N (1992) Zusammenführung von Degenerationskonzept und Schalentheorie bei endlichen Rotationen. Bericht Nr. 14. Institut für Baustatik d. Universität StuttgartGoogle Scholar
  8. Chi H, Katzin H, Teng C (1956) Histopathology of keratoconus. Am J Ophthalmol 42: 847–860Google Scholar
  9. Curtin B, Iwamoto T, Renaldo D (1979) Normal and staphylomatous sclera of high myopia. Arch Ophthalmol 97(5): 912–915Google Scholar
  10. Daxer A, Fratzl P (1997) Collagen fibril orientation in the human corneal stroma and its implication in. Investig Ophthalmol Vis Sci 38: 121–129Google Scholar
  11. Driessen N, Cox M, Bouten C, Baaijens P (2008) Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol 7: 93–103CrossRefGoogle Scholar
  12. Driessen N, Wilson W, Bouten C, Baaijens F (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226: 53–64CrossRefGoogle Scholar
  13. Elsheik A, Alhassoa D, Rama P (2008) Biomechanical properties of human and porcine corneas. Exp Eye Res 86(5): 783–790CrossRefGoogle Scholar
  14. Farrell R, McCally R, Tatham P (1973) Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications. J Physiol 233: 589–612Google Scholar
  15. Fung Y (1993) Biomechanics—mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  16. Gasser T, Ogden R, Holzapfel G (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3: 15–35CrossRefGoogle Scholar
  17. Gleason R, Humphrey J (2004) A mixture model of arterial growth and remodeling in hypertension: Altered muscle tone and tissue turnover. J Vasc Res 41: 352–363CrossRefGoogle Scholar
  18. Grytz R (2008) Computational modeling and remodeling of human eye tissues as biomechanical structures at multiple scales. Ph.D. thesis, Ruhr-University Bochum, GermanyGoogle Scholar
  19. Grytz R, Meschke G (2009) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater 2: 522–533CrossRefGoogle Scholar
  20. Hariton I, de Botton G, Gasser T, Holzapfel G (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3): 163–175CrossRefGoogle Scholar
  21. Hernandez M, Andrzejewska W, Neufeld A (1990) Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma. Am J Ophthalmol 109: 180–188Google Scholar
  22. Hernandez M, Gong H (1996) Extracellular matrix of the trabecular meshwork and optic nerve head. In: Ritch R, Shields M, Krupin T(eds) The Glaucomas: basic sciences, chap 11. Mosby, St. Louis, pp 213–249Google Scholar
  23. Himpel G, Menzel A, Kuhl E, Steinmann P (2008) Time-dependent fiber reorientation of transversely isotropic continua—finite element formulation and consistent linearization. Int J Numer Methods Eng 73: 1413–1433MATHCrossRefMathSciNetGoogle Scholar
  24. Iwamoto T, Devoe A (1975) Particulate structures in keratoconus. Archives d’ophtalmologie et revue générale d’ophtalmologie 35: 65–72Google Scholar
  25. Kastelic J, Palley I, Baer E (1980) A structural mechanical model for tendon crimping. J Biomech 13: 887–893CrossRefGoogle Scholar
  26. Kenney M, Nesburn A, Burgeson R, Butkowski R, Ljubimov A (1997) Abnormalities of the extracellular matrix in keratoconus corneas. Cornea 16: 345–351CrossRefGoogle Scholar
  27. Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Investig Ophthalmol Vis Sci 32(8): 2244–2258Google Scholar
  28. Krachmer J, Feder R, Belin M (1984) Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 28: 293–322CrossRefGoogle Scholar
  29. Kuhl E, Garikipati K, Arruda E, Grosh K (2005) Remodeling of biological tissues: Mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53: 1552–1573MATHCrossRefMathSciNetGoogle Scholar
  30. Kuhl E, Holzapfel G (2007) A continuum model for remodeling in living structures. J Mater Sci 42: 8811–8823CrossRefGoogle Scholar
  31. Kuhl E, Menzel A, Garikipati K, Arruda E, Grosh K (2006) Modeling and simulation of remodeling in soft biological tissues. In: Holzapfel G, Ogden R(eds) Mechanics of biological tissues, IUTAM. Springer, Berlin, pp 77–89CrossRefGoogle Scholar
  32. Liao J (2003) Mechanical and structural properties of mitral valve chordae tendineae. Ph.D. thesis, Cleveland State University, OhioGoogle Scholar
  33. Meek K, Blamires T, Elliott G, Gyi T, Nave C (1989) The organisation of collagen fibrils in the human corneal stroma: a synchrotron X-ray diffraction study. Curr Eye Res 6: 841–846CrossRefGoogle Scholar
  34. Meek K, Fullwood N (2001) Corneal and scleral collagens—a microscopist’s perspective. Micron 32: 261–272CrossRefGoogle Scholar
  35. Menzel A (2006) Anisotropic remodelling of biological tissues. In: Holzapfel G, Ogden R(eds) Mechanics of biological tissues. Springer, Berlin, pp 91–104CrossRefGoogle Scholar
  36. Newton R, Meek K (1998) The integration of the corneal and limbal fibrils in the human eye. Biophys J 75: 2508–2512CrossRefGoogle Scholar
  37. Pataa C, Joyon L, Roucher F (1970) Ultrastructure of keratoconus. Archives d’ophtalmologie et revue générale d’ophtalmologie 30: 403–417Google Scholar
  38. Pietraszkiewicz W, Badur J (1983) Finite rotations in the description of continuum deformation. Int J Eng Sci 9: 1097–1115CrossRefMathSciNetGoogle Scholar
  39. Pinsky P, van der Heide D, Chernyak D (2005) Computational modeling of the mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 31: 136–145CrossRefGoogle Scholar
  40. Ricken T, Schwarza A, Bluhm J (2007) A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput Mater Sci 39: 124–136CrossRefGoogle Scholar
  41. Sawaguchi S, Fukuchi T, Abe H, Kaiya T, Sugar J, Yue B (1998) Three-dimensional scanning electron microscopic study of keratoconus corneas. Arch Ophthalmol 116: 62–68Google Scholar
  42. Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. part I: Formulation and optimal parameterization. Comput Methods Appl Mech Eng 72: 267–304MATHCrossRefMathSciNetGoogle Scholar
  43. Taber L, Humphrey J (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123: 528–535CrossRefGoogle Scholar
  44. Teng C (1963) Electron microscope study of the pathology of keratoconus. Am J Ophthalmol 55: 18–47Google Scholar
  45. Trotter J, Thurmond F, Koob T (1994) Molecular structure and functional morphology of echinoderm collagen fibrils. Cell Tissue Res 275: 451–458CrossRefGoogle Scholar
  46. Woo S, Kobayashi A, Schlegel W, Lawrence C (1972) Nonlinear material properties of intact cornea and sclera. Exp Eye Res 14: 29–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Structural MechanicsRuhr-University BochumBochumGermany

Personalised recommendations