Advertisement

Viscoelastic and failure properties of spine ligament collagen fascicles

  • Scott R. LucasEmail author
  • Cameron R. Bass
  • Jeff R. Crandall
  • Richard W. Kent
  • Francis H. Shen
  • Robert S. Salzar
Original Paper

Abstract

The microstructural volume fractions, orientations, and interactions among components vary widely for different ligament types. If these variations are understood, however, it is conceivable to develop a general ligament model that is based on microstructural properties. This paper presents a part of a much larger effort needed to develop such a model. Viscoelastic and failure properties of porcine posterior longitudinal ligament (PLL) collagen fascicles were determined. A series of subfailure and failure tests were performed at fast and slow strain rates on isolated collagen fascicles from porcine lumbar spine PLLs. A finite strain quasi-linear viscoelastic model was used to fit the fascicle experimental data. There was a significant strain rate effect in fascicle failure strain (P < 0.05), but not in failure force or failure stress. The corresponding average fast-rate and slow-rate failure strains were 0.098 ± 0.062 and 0.209 ± 0.081. The average failure force for combined fast and slow rates was 2.25 ± 1.17 N. The viscoelastic and failure properties in this paper were used to develop a microstructural ligament failure model that will be published in a subsequent paper.

Keywords

Spine Ligament Fascicle Viscoelasticity Failure Biomechanics 

References

  1. Atkinson TS, Haut RC, Altiero NJ (1997) A poroelastic model that predicts some phenomenological responses of ligaments and tendons. J Biomech Eng 119: 400–405. doi: 10.1115/1.2798285 CrossRefGoogle Scholar
  2. Bass CR, Lucas SR, Salzar RS, Oyen ML, Planchak C, Shender BS, Paskoff G (2007) Failure properties of cervical spinal ligaments under fast strain rate deformations. Spine 32(1): E7–E13. doi: 10.1097/01.brs.0000251058.53905.eb CrossRefGoogle Scholar
  3. (1952) The structure of collagen fibrils. Adv Protein Chem 7: 69–160CrossRefGoogle Scholar
  4. Bolton J (2002) Horizontal decelerator ejection seat testing using Hybrid III test dummies and human surrogates. University of Virginia, Test Report: ESATDGoogle Scholar
  5. Butler DL, Kay MD, Stouffer SC (1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 19(6): 423–432. doi: 10.1016/0021-9290(86)90019-9 CrossRefGoogle Scholar
  6. Butler SL, Kohles SS, Thielke RJ, Chen CT, Vanderby R Jr (1997) Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation. Med Biol Eng Comput 35(6): 742–746. doi: 10.1007/BF02510987 CrossRefGoogle Scholar
  7. Carpenter WB (1876) Principles of human physiology. Sherman and Co., PhiladelphiaGoogle Scholar
  8. Chimich D, Shrive N, Frank C, Marchuk L, Bray R (1992) Water content alters viscoelastic behavior of the normal adolescent rabbit medial collateral ligament. J Biomech 25: 831–837. doi: 10.1016/0021-9290(92)90223-N CrossRefGoogle Scholar
  9. Darvish K, Takhounts E, Matthews B, Crandall J (1999) A nonlinear viscoelastic model for polyurethane foams. SAE Technical Paper Series. Paper No: 1999-01-0299Google Scholar
  10. Derwin KA, Soslowsky LJ (1999) A quantitative investigation of structure-function relationsips in a tendon fascicle model. J Biomech Eng 121: 598–604. doi: 10.1115/1.2800859 CrossRefGoogle Scholar
  11. Elliot DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ (2003) Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng 31: 599–605. doi: 10.1114/1.1567282 CrossRefGoogle Scholar
  12. Forman J, Lessley D, Kent R, Bostrom O, Pipkorn B (2006) Whole-body kinematic and dynamic response of restrained PMHS in frontal sled tests. Stapp Car Crash J 50: 1–38Google Scholar
  13. Fung YC (1981) Biomechanics: mechanical properties of living tissues. Springer-Verlag, New YorkGoogle Scholar
  14. Funk JR, Hall GW, Crandall JR, Pilkey WD (2000) Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng 122: 15–22. doi: 10.1115/1.429623 CrossRefGoogle Scholar
  15. Gathercole LF, Keller A (1991) Crimp morphology in the fibre-forming collagens. Matrix 11: 214–234Google Scholar
  16. Goh SM, Charalambides MN, Williams JG (2003) Large strain time dependent behavior of cheese. J Neurophysiol 95: 774–782Google Scholar
  17. Hansen KA, Weiss JA, Barton JK (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124: 72–77. doi: 10.1115/1.1427698 CrossRefGoogle Scholar
  18. Haut RC (1986) The influence of specimen length on the tensile failure properties of tendon collagen. J Biomech 19(11): 951–955. doi: 10.1016/0021-9290(86)90190-9 CrossRefGoogle Scholar
  19. Heraldsson BT, Aagaard P, Krogsgaard M, Alkjaer T, Kjaer M, Magnusson SP (2005) Region-specific mechanical properties of the human patella tendon. J Appl Physiol 98: 1006–1012. doi: 10.1152/japplphysiol.00482.2004 CrossRefGoogle Scholar
  20. Hurschler C, Provenzano PP, Vanderby R Jr (2003) Scanning electron microscopic characterization of healing and normal rat ligament microstructure under slack and loading conditions. Connect Tissue Res 44: 59–68. doi: 10.1080/713713656 CrossRefGoogle Scholar
  21. Kastelic J (1978) The multicomposite structure of tendon. Connect Tissue Res 6(1): 11–23. doi: 10.3109/03008207809152283 CrossRefGoogle Scholar
  22. Kauer M, Vuskovic V, Dual J, Szekely G, Bajka M (2002) Inverse finite element characterization of soft tissues. Med Image Anal 6: 275–287. doi: 10.1016/S1361-8415(02)00085-3 CrossRefGoogle Scholar
  23. Kerrigan JR, Ivarsson BJ, Bose D, Madeley NJ, Millington SA, Bhalla KS, Crandall JR (2003) Rate-sensitive constitutive properties of human collateral knee ligaments. IRCOBI Conference ProceedingsGoogle Scholar
  24. Lees S, Davidson CL (1977) The role of collagen in the elastic properties of calcified tissues. J Biomech 10: 473–486. doi: 10.1016/0021-9290(77)90101-4 CrossRefGoogle Scholar
  25. Lucas SR (2008a) A microstructural viscoelastic ligament failure model. University of Virginia doctoral dissertation, Charlottesville, VAGoogle Scholar
  26. Lucas SR, Bass CR, Salzar RS, Oyen ML, Planchak C, Ziemba A, Shender BS, Paskoff G (2008b) Viscoelastic properties of the cervical spine under fast strain rate deformations. Acta Biomater 4(1): 117–125. doi: 10.1016/j.actbio.2007.08.003 CrossRefGoogle Scholar
  27. Niven H, Baer E, Hiltner A (1982) Organization of collagen fibers in rat tail tendon at the optical microscope level. Coll Relat Res 2: 131–142Google Scholar
  28. Pioletti DP, Rakotomanana LR, Benvenuti JR, Leyvraz PF (1998) Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech 31: 753–757. doi: 10.1016/S0021-9290(98)00077-3 CrossRefGoogle Scholar
  29. Provenzano PP, Lakes RS, Corr DT, Vanderby R Jr (2002) Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol 1: 45–57. doi: 10.1007/s10237-002-0004-1 CrossRefGoogle Scholar
  30. Rigby BJ, Hirai N, Spikes JD, Eyring H (1959) The mechanical properties of rat tail tendon. J Gen Physiol 43: 251–264. doi: 10.1085/jgp.43.2.265 CrossRefGoogle Scholar
  31. Robinson PS, Lin TW, Reynolds PR, Derwin KA, Iozzo RV, Soslowsky LJ (2004) Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J Biomech Eng 126: 252–257. doi: 10.1115/1.1695570 CrossRefGoogle Scholar
  32. Sklavos S, Dimitrova DM, Goldberg SJ, Porrill J, Dean P (2006) Long time-constant behavior of the oculomotor plant in barbiturate-anesthetized primate. J Neurophysiol 95: 774–782. doi: 10.1152/jn.00584.2005 CrossRefGoogle Scholar
  33. Van Dommelen JAW, Ivarsson BJ, Jolandan MM, Millington SA, Raut M, Kerrigan JR, Crandall JR, Diduch DR (2005a) Characterization of the rate-dependent mechanical properties and failure of human knee ligaments. SAE Technical Paper Series, Paper Number 2005-01-0293Google Scholar
  34. Van Dommelen JAW, Jolandan MM, Ivarsson BJ, Millington SA, Raut M, Kerrigan JR, Crandall JR (2005b) Pedestrian injuries: viscoelastic properties of human knee ligaments at high loading rates. Traffic Inj Prev 6: 278–287. doi: 10.1080/15389580590969436 CrossRefGoogle Scholar
  35. Viidik A (1972) Simultaneous mechanical and light microscopic studies in collagen fibres. Z Anat Entwicklungsgesch 136: 204–212. doi: 10.1007/BF00519178 CrossRefGoogle Scholar
  36. Viidik A, Ekholm R (1968) Light and electron microscopic studies of collagen fibers under strain. Z Anat Entwicklungsgesch 127: 154–164. doi: 10.1007/BF00521981 CrossRefGoogle Scholar
  37. Weiss JA, Gardiner JC, Bonifasi-Lista C (2002) Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech 35: 943–950. doi: 10.1016/S0021-9290(02)00041-6 CrossRefGoogle Scholar
  38. Wilmink J (1992) Functional significance of the morphology and micromechanics of collagen fibers in relation to partial rupture of the superficial digital flexor tendon in racehorses. Res Vet Sci 53: 354–359Google Scholar
  39. Yamamoto E, Hayashi K, Yamamoto N (1999) Mechanical properties of collagen fascicles from the rabbit patellar tendon. J Biomech Eng 121: 124–131. doi: 10.1115/1.2798033 CrossRefGoogle Scholar
  40. Yamamoto E, Tokura Susumu, Yamamoto N, Hayashi K (2000) Mechanical properties of collagen fascicles from in situ frozen and stress-shielded rabbit patellar tendons. Clin Biomech (Bristol, Avon) 15: 284–291. doi: 10.1016/S0268-0033(99)00072-8 CrossRefGoogle Scholar
  41. Yamamoto E, Tokura S, Hayashi K (2003) Effects of cyclic stress on the mechanical properties of cultured collagen fascicles from the rabbit patellar tendon. J Biomech Eng 125: 893–901. doi: 10.1115/1.1634286 CrossRefGoogle Scholar
  42. Yoganandan N, Pintar F, Butler J, Reinhartz J, Sances A Jr, Larson SJ (1989) Dynamic response of human cervical spine ligaments. Spine 14(10): 1103–1110. doi: 10.1097/00007632-198910000-00013 CrossRefGoogle Scholar
  43. Zervakis M, Gkoumplias V, Tzaphlidou M (2005) Analysis of fibrous proteins from electron microscopy images. Med Eng Phys 27: 655–667. doi: 10.1016/j.medengphy.2005.02.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Scott R. Lucas
    • 1
    Email author
  • Cameron R. Bass
    • 2
  • Jeff R. Crandall
    • 3
    • 4
  • Richard W. Kent
    • 3
    • 5
  • Francis H. Shen
    • 6
  • Robert S. Salzar
    • 3
  1. 1.Exponent Failure Analysis Associates, Biomechanics PracticePhiladelphiaUSA
  2. 2.Duke UniversityDurhamUSA
  3. 3.Department of Mechanical and Aerospace Engineering, Center for Applied BiomechanicsUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of Biomedical Engineering, Center for Applied BiomechanicsUniversity of VirginiaCharlottesvilleUSA
  5. 5.Department of Emergency Medicine, Center for Applied BiomechanicsUniversity of VirginiaCharlottesvilleUSA
  6. 6.Department of Orthopedic SurgeryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations