Biomechanics and Modeling in Mechanobiology

, Volume 8, Issue 4, pp 253–262 | Cite as

Residual stress in the adult mouse brain



This work provides direct evidence that sustained tensile stress exists in white matter of the mature mouse brain. This finding has important implications for the mechanisms of brain development, as tension in neural axons has been hypothesized to drive cortical folding in the human brain. In addition, knowledge of residual stress is required to fully understand the mechanisms behind traumatic brain injury and changes in mechanical properties due to aging and disease. To estimate residual stress in the brain, we performed serial dissection experiments on 500-mum thick coronal slices from fresh adult mouse brains and developed finite element models for these experiments. Radial cuts were made either into cortical gray matter, or through the cortex and the underlying white matter tract composed of parallel neural axons. Cuts into cortical gray matter did not open, but cuts through both layers consistently opened at the point where the cut crossed the white matter. We infer that the cerebral white matter is under considerable tension in the circumferential direction in the coronal cerebral plane, parallel to most of the neural fibers, while the cerebral cortical gray matter is in compression. The models show that the observed deformation after cutting can be caused by more growth in the gray matter than in the white matter, with the estimated tensile stress in the white matter being on the order of 100–1,000 Pa.


Biomechanics Morphogenesis Cortical folding Axon Stiffness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander GM, Deitch JS, Seeburger JL, Valle LD, Heiman-Patterson TD (2000) Elevated cortical extracellular fluid glutamate in transgenic mice expressing human mutant (G93A) Cu/Zn superoxide dismutase. J Neurochem 74: 1666–1673. doi: 10.1046/j.1471-4159.2000.0741666.x CrossRefGoogle Scholar
  2. Chada S, Lamoureux P, Buxbaum RE, Heidemann SR (1997) Cytomechanics of neurite outgrowth from chick brain neurons. J Cell Sci 110: 1179–1186Google Scholar
  3. Cheng S, Bilston LE (2007) Unconfined compression of white matter. J Biomech 40: 117–124. doi: 10.1016/j.jbiomech.2005.11.004 CrossRefGoogle Scholar
  4. Coats B, Margulies SS (2006) Material properties of porcine parietal cortex. J Biomech 39: 2521–2525. doi: 10.1016/j.jbiomech.2005.07.020 CrossRefGoogle Scholar
  5. Dennerll TJ, Lamoureux P, Buxbaum RE, Heidemann SR (1989) The cytomechanics of axonal elongation and retraction. J Cell Biol 109: 3073–3083. doi: 10.1083/jcb.109.6.3073 CrossRefGoogle Scholar
  6. Drapaca C, Tenti G, Rohlf K, Sivaloganathan S (2006) A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J Elast 85: 65–83. doi: 10.1007/s10659-006-9071-3 MATHCrossRefMathSciNetGoogle Scholar
  7. Elkin BS, Azeloglu EU, Costa KD, Morrison B (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24: 812–822. doi: 10.1089/neu.2006.0169 CrossRefGoogle Scholar
  8. Faisal AA, White JA, Laughlin SB (2005) Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr Biol 15: 1143–1149. doi: 10.1016/j.cub.2005.05.056 CrossRefGoogle Scholar
  9. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  10. Fung YC (1998) Biomechanics: motion, flow, stress, and growth. Springer, New YorkGoogle Scholar
  11. Gefen A, Gefen N, Zhu QL, Raghupathi R, Margulies SS (2003) Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma 20: 1163–1177. doi: 10.1089/089771503770802853 CrossRefGoogle Scholar
  12. Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar?. J Biomech 37: 1339–1352. doi: 10.1016/j.jbiomech.2003.12.032 CrossRefGoogle Scholar
  13. Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90: 3012–3018. doi: 10.1529/biophysj.105.073114 CrossRefGoogle Scholar
  14. Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLOS Comput Biol 2: 146–159. doi: 10.1371/journal.pcbi.0020022 CrossRefGoogle Scholar
  15. Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl) 210: 411–417. doi: 10.1007/s00429-005-0041-5 CrossRefGoogle Scholar
  16. Hrapko M, van Dommelen JAW, Peters GWM, Wismans JSHM (2006) The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheol 43: 623– 636Google Scholar
  17. Kingsbury MA, Rehen SK, Contos JJA, Higgins CM, Chun J (2003) Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 6: 1292–1299. doi: 10.1038/nn1157 CrossRefGoogle Scholar
  18. Kioussi C, Appu M, Lohr CV, Fischer KA, Bajaj G, Leid M et al (2007) Co-expression of myosin II regulatory light chain and the NMDAR1 subunit in neonatal and adult mouse brain. Brain Res Bull 74: 439–451. doi: 10.1016/j.brainresbull.2007.07.024 CrossRefGoogle Scholar
  19. Kyriacou SK, Mohamed A, Miller K, Neff S (2002) Brain mechanics for neurosurgery: modeling issues. Biomech Model Mechanobiol 1: 151–164. doi: 10.1007/s10237-002-0013-0 CrossRefGoogle Scholar
  20. Lamoureux P, Buxbaum RE, Heidemann SR (1989) Direct evidence that growth cones pull. Nature 340: 159–162. doi: 10.1038/340159a0 CrossRefGoogle Scholar
  21. Lamoureux P, Ruthel G, Buxbaum RE, Heidemann SR (2002) Mechanical tension can specify axonal fate in hippocampal neurons. J Cell Biol 159: 499–508. doi: 10.1083/jcb.200207174 CrossRefGoogle Scholar
  22. Larvaron P, Boespflug-Tanguy O, Renou JP, Bonny JM (2007) In vivo analysis of the post-natal development of normal mouse brain by DTI. NMR Biomed 20: 413–421. doi: 10.1002/nbm.1082 CrossRefGoogle Scholar
  23. Miller K (1999) Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J Biomech 32: 531–537. doi: 10.1016/S0021-9290(99)00010-X CrossRefGoogle Scholar
  24. Miller K, Chinzei K (2002) Mechanical properties of brain tissue in tension. J Biomech 35: 483–490. doi: 10.1016/S0021-9290(01)00234-2 CrossRefGoogle Scholar
  25. Miller K, Chinzei K, Orssengo G, Bednarz P (2000) Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech 33: 1369–1376. doi: 10.1016/S0021-9290(00)00120-2 CrossRefGoogle Scholar
  26. Miller K, Chinzei K (1997) Constitutive modelling of brain tissue: experiment and theory. J Biomech 30: 1115–1121. doi: 10.1016/S0021-9290(97)00092-4 CrossRefGoogle Scholar
  27. Miller M, Bower E, Levitt P, Li D, Chantler PD (1992) Myosin II distribution in neurons is consistent with a role in growth cone motility but not synaptic vesicle mobilization. Neuron 8: 25–44. doi: 10.1016/0896-6273(92)90106-N CrossRefGoogle Scholar
  28. Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15: 543–552. doi: 10.1002/nbm.784 CrossRefGoogle Scholar
  29. Nordahl CW, Dierker D, Mostafavi I, Schumann CM, Rivera SM, Amaral DG et al (2007) Cortical folding abnormalities in autism revealed by surface-based morphometry. J Neurosci 27: 11725–11735. doi: 10.1523/JNEUROSCI.0777-07.2007 CrossRefGoogle Scholar
  30. Olivares R, Montiel J, Aboitiz F (2001) Species differences and similarities in the fine structure of the mammalian corpus callosum. Brain Behav Evol 57: 98–105. doi: 10.1159/000047229 CrossRefGoogle Scholar
  31. Porter BE, Brooks-Kayal A, Golden JA (2002) Disorders of cortical development and epilepsy. Arch Neurol 59: 361–365. doi: 10.1001/archneur.59.3.361 CrossRefGoogle Scholar
  32. Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng 124: 244–252. doi: 10.1115/1.1449907 CrossRefGoogle Scholar
  33. Richman DP, Stewart RM, Hutchinson JW, Caviness VS Jr (1975) Mechanical model of brain convolutional development. Science 189: 18–21. doi: 10.1126/science.1135626 CrossRefGoogle Scholar
  34. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27: 455–467. doi: 10.1016/0021-9290(94)90021-3 CrossRefGoogle Scholar
  35. Sallet PC, Elkis H, Alves TM, Oliveira JR, Sassi E, de Castro CC et al (2003) Reduced cortical folding in schizophrenia: an MRI morphometric study. Am J Psychiatry 160: 1606–1613. doi: 10.1176/appi.ajp.160.9.1606 CrossRefGoogle Scholar
  36. Taber LA (2007) Theoretical study of Beloussov’s hyper-restoration hypothesis for mechanical regulation of morphogenesis. Biomech Model Mechanobiol. doi: 10.1007/s10237-007-0106-x
  37. Taber LA, Perucchio R (2000) Modeling heart development. J Elast 61: 165–197. doi: 10.1023/A:1011082712497 MATHCrossRefMathSciNetGoogle Scholar
  38. Taber LA (2001) Biomechanics of cardiovascular development. Annu Rev Biomed Eng 3: 1–25. doi: 10.1146/annurev.bioeng.3.1.1 CrossRefGoogle Scholar
  39. Taylor Z, Miller K (2004) Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J Biomech 37: 1263–1269. doi: 10.1016/j.jbiomech.2003.11.027 CrossRefGoogle Scholar
  40. Tekkok SB, Goldberg MP (2001) AMPA/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21: 4237–4248Google Scholar
  41. Thibault KL, Margulies SS (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31: 1119–1126. doi: 10.1016/S0021-9290(98)00122-5 CrossRefGoogle Scholar
  42. Todd PH (1982) A geometric model for the cortical folding pattern of simple folded brains. J Theor Biol 97: 529–538. doi: 10.1016/0022-5193(82)90380-0 CrossRefMathSciNetGoogle Scholar
  43. Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15: 1900–1913. doi: 10.1093/cercor/bhi068 CrossRefGoogle Scholar
  44. Valverde F (2004) Golgi atlas of the postnatal mouse brain. Springer, New YorkGoogle Scholar
  45. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385: 313–318. doi: 10.1038/385313a0 CrossRefGoogle Scholar
  46. Welker W (1990) Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Jones EG, Peters A(eds) Cerebral cortex. Plenum, New York, pp 3–136Google Scholar
  47. Zamir EA, Taber LA (2004) On the effects of residual stress in microindentation tests of soft tissue structures. J Biomech Eng 126: 276–283. doi: 10.1115/1.1695573 CrossRefGoogle Scholar
  48. Zhang LY, Yang KH, King AI (2001) Biomechanics of neurotrauma. Neurol Res 23: 144–156. doi: 10.1179/016164101101198488 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringWashington UniversitySt LouisUSA
  2. 2.Department of Mechanical, Aerospace, and Structural EngineeringWashington UniversitySt LouisUSA

Personalised recommendations