The micromechanics of fluid–solid interactions during growth in porous soft biological tissue

  • H. Narayanan
  • E. M. Arruda
  • K. Grosh
  • K. GarikipatiEmail author
Original Paper


In this paper, we address some modelling issues related to biological growth. Our treatment is based on a formulation for growth that was proposed within the context of mixture theory (J Mech Phys Solids 52:1595–1625, 2004). We aim to make this treatment more appropriate for the physics of porous soft tissues, paying particular attention to the nature of fluid transport, and mechanics of fluid and solid phases. The interactions between transport and mechanics have significant implications for growth and swelling. We also reformulate the governing differential equations for reaction-transport of solutes to represent the incompressibility constraint on the fluid phase of the tissue. This revision enables a straightforward implementation of numerical stabilisation for the advection-dominated limit of these equations. A finite element implementation with operator splitting is used to solve the coupled, non-linear partial differential equations that arise from the theory. We carry out a numerical and analytic study of the convergence of the operator splitting scheme subject to strain- and stress-homogenisation of the mechanics of fluid–solid interactions. A few computations are presented to demonstrate aspects of the physical mechanisms, and the numerical performance of the formulation.


Mixture theory Homogenisation Operator-splitting 


  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, OxfordGoogle Scholar
  2. Ambrosi D, Mollica F (2002) On the mechanics of a growing tumor. Int J Eng Sci 40: 1297–1316CrossRefMathSciNetGoogle Scholar
  3. Armero F (1999) Formulation and finite element implementation of a multiplicative model of coupled poro-pplasticity at finite strains under fully-saturated conditions. Comp Methods Appl Mech Eng 171: 205–241zbMATHCrossRefMathSciNetGoogle Scholar
  4. Bischoff JE, Arruda EM, Grosh K (2002a) A microstructurally based orthotropic hyperelastic constitutive law. J Appl Mech 69: 570–579zbMATHCrossRefGoogle Scholar
  5. Bischoff JE, Arruda EM, Grosh K (2002b) Orthotropic elasticity in terms of an arbitrary molecular chain model. J Appl Mech 69: 198–201zbMATHCrossRefGoogle Scholar
  6. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New YorkGoogle Scholar
  7. Bromberg S, Dill KA (2002) Molecular driving forces: statistical thermodynamics in chemistry and biology. Garland, OxfordGoogle Scholar
  8. Brooks A, Hughes T (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comp Methods Appl Mech Eng 32: 199–259zbMATHCrossRefMathSciNetGoogle Scholar
  9. Calve S, Dennis R, Kosnik P, Baar K, Grosh K, Arruda E (2004) Engineering of functional tendon. Tissue Eng 10: 755–761CrossRefGoogle Scholar
  10. Cowin SC, Hegedus DH (1976) Bone remodeling I: a theory of adaptive elasticity. J Elast 6: 313–325zbMATHCrossRefMathSciNetGoogle Scholar
  11. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16: 951–978zbMATHCrossRefGoogle Scholar
  12. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New YorkGoogle Scholar
  13. Garikipati K, Rao VS (2001) Recent advances in models for thermal oxidation of silicon. J Comput Phys 174: 138–170zbMATHCrossRefGoogle Scholar
  14. Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: mass transport coupled with mechanics. J Mech Phys Solids 52: 1595–1625zbMATHCrossRefMathSciNetGoogle Scholar
  15. Garikipati K, Olberding JE, Narayanan H, Arruda EM, Grosh K, Calve S (2006) Biological remodelling: stationary energy, configurational change, internal variables and dissipation. J Mech Phys Solids 57: 1493–1515CrossRefMathSciNetGoogle Scholar
  16. Han S, Gemmell SJ, Helmer KG, Grigg P, Wellen JW, Hoffman AH, Sotak CH (2000) Changes in ADC caused by tensile loading of rabbit achilles tendon: evidence for water transport. J Magn Reson 144: 217–227CrossRefGoogle Scholar
  17. Hughes T, Franca L, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VII. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective–diffusive systems. Comp Methods Appl Mech Eng 63(1): 97–112zbMATHCrossRefMathSciNetGoogle Scholar
  18. Humphrey JD, Rajagopal (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Methods Mod Appl Sci 12(3): 407–430zbMATHCrossRefMathSciNetGoogle Scholar
  19. Klisch SM, van Dyke TJ, Hoger A (2001) A theory of volumetric growth for compressible elastic biological materials. Math Mech Solids 6: 551–575zbMATHCrossRefGoogle Scholar
  20. Kratky O, Porod G (1949) Röntgenuntersuchungen gelöster Fadenmoleküle. Recl Trav Chim 68: 1106–1122Google Scholar
  21. Kuhl E, Garikipati K, Arruda E, Grosh K (2005) Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids (UK) 53(7): 1552–1573zbMATHCrossRefMathSciNetGoogle Scholar
  22. Lee EH (1969) Elastic–plastic deformation at finite strains. J Appl Mech 36: 1–6zbMATHGoogle Scholar
  23. Milton GW (2002) Theory of composites. Cambridge University Press, LondonzbMATHGoogle Scholar
  24. Nordin M, Lorenz T, Campello M (2001) Biomechanics of tendons and ligaments. In: Nordin M, Frankel VH (eds) Basic biomechanics of the musculoskeletal system. Lippincott Williams and Wilkins, New York, pp 102–125Google Scholar
  25. Rao VS, Hughes TJR, Garikipati K (2000) On modelling thermal oxidation of silicon ii: Numerical aspects. Int J Numer Methods Eng 47(1/3): 359–378zbMATHCrossRefGoogle Scholar
  26. Rodriguez EK, Hoger A, McCullough AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27: 455–467CrossRefGoogle Scholar
  27. Sengers BG, Oomens CWJ, Baaijens FPT (2004) An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering. J BioMech Eng 126: 82–91CrossRefGoogle Scholar
  28. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comp Methods Appl Mech Eng 51: 177–208zbMATHCrossRefMathSciNetGoogle Scholar
  29. Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress and vascular heterogeneity. J BioMech Eng 123: 528–535CrossRefGoogle Scholar
  30. Taylor RL (1999) FEAP—a finite element analysis program. University of California at Berkeley, BerkeleyGoogle Scholar
  31. Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4: 71–88zbMATHMathSciNetGoogle Scholar
  32. Truesdell C, Noll W (1965) The non-linear field theories (Handbuch der Physik, band III). Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • H. Narayanan
    • 1
  • E. M. Arruda
    • 1
  • K. Grosh
    • 1
  • K. Garikipati
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations