Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 8, Issue 2, pp 149–165 | Cite as

A three-dimensional elastic plastic damage constitutive law for bone tissue

  • David Garcia
  • Philippe K. ZyssetEmail author
  • Mathieu Charlebois
  • Alain Curnier
Original Paper

Abstract

Motivated by mechanical analysis of bones and bone-implant systems, a 3D constitutive law describing the macroscopic mechanical behaviour of both cortical and trabecular bone in cyclic (not fatigue) overloads is developed. The proposed model which mathematical formulation is established within the framework of generalized standard materials accounts for three distinct material evolution modes where elastic, plastic and damage aspects are closely related. The anisotropic elasticity of bone is described by a morphology-based model and distinct damage behaviour in tension and compression by a halfspacewise generalized Hill criterion. The plastic criterion is based on the intact elastic compliance tensor. The algorithm applies three distinct projections based on the relationship between the internal variables and criteria. Their respective consistent tangent operators are presented. Numerical resolutions of several boundary value problems and a biomechanical application are presented to illustrate the potential of the constitutive model and demonstrate the expected quadratic convergence of the algorithm.

Keywords

Bone tissue Constitutive law Damage Elasticity Fabric Plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92: 353–375zbMATHCrossRefMathSciNetGoogle Scholar
  2. Ascenzi A, Bonucci E, Ripamonti A, Roveri N (1978) X-ray diffraction and electron microscope study of osteons during calcification. Calcified Tissue Res 25: 133–143CrossRefGoogle Scholar
  3. Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4(2): 137–147CrossRefGoogle Scholar
  4. Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  5. Curnier A (1993) Méthodes numériques en mécanique des solides. Presses Polytechniques et Universitaires Romandes (PPUR), LausannezbMATHGoogle Scholar
  6. Curnier A, He Q-C, Zysset PK (1995) Conewise linear elastic materials. J Elast 37: 1–38zbMATHCrossRefMathSciNetGoogle Scholar
  7. Currey JD (2002) Bones: structure and mechanics. Princeton University Press, PrincetonGoogle Scholar
  8. Fondrk MT, Bahniuk EH, Davy DT, Michaels C (1988) Some viscoplastic characteristics of bovine and human cortical bone. J Biomech 21(8): 623–630CrossRefGoogle Scholar
  9. Fondrk MT, Bahniuk EH, Davy DT (1999a) Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 121: 616–621CrossRefGoogle Scholar
  10. Fondrk MT, Bahniuk EH, Davy DT (1999b) A damage model for nonlinear tensile behavior of cortical bone. J Biomed Eng 121: 533–541Google Scholar
  11. Garcia D (2006) Elastic plastic damage constitutive laws for cortical bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne. Available online at: http://library.epfl.ch/theses/?nr=3435. Accessed 4 June 2007
  12. Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Arch Rational Mech Anal 18(4): 251–281CrossRefMathSciNetGoogle Scholar
  13. Hansen NR, Schreyer HL (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31: 359–389zbMATHCrossRefGoogle Scholar
  14. He Q-C, Curnier A (1995) A more fundamental approach to damaged elastic stress-strain relations. Int J Solids Struct 32(10): 1433–1457zbMATHCrossRefMathSciNetGoogle Scholar
  15. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, LondonzbMATHGoogle Scholar
  16. Kanatani KI (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2): 149–164zbMATHCrossRefMathSciNetGoogle Scholar
  17. Keaveny TM, Wachtel EF, Kopperdahl DL (1999) Mechanical behavior of human trabecular bone after overloading. J Orthop Res 17: 346–353CrossRefGoogle Scholar
  18. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3: 307–333CrossRefGoogle Scholar
  19. Kotha SP, Guzelsu N (2003) Tensile damage and its effects on cortical bone. J Biomech 36(11): 1683–1689CrossRefGoogle Scholar
  20. Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  21. Lemaitre J, Chaboche JL (2001) Mécanique des matériaux solides, 2e édn. Dunod, ParisGoogle Scholar
  22. Liebschner MAK, Kopperdahl DL, Rosenberg WS, Keaveny TM (2001) Contribution of cortical shell and endplate to vertebral body stiffness. In: BED-Vol. 50, 2001 Bioengineering conference, ASMEGoogle Scholar
  23. Lubarda VA, Krajcinovic D (1995) Some fundamental issues in rate theory of damage-elastoplasticity. Int J Plast 11: 763–797zbMATHCrossRefGoogle Scholar
  24. Moreau JJ (1979) Application of convex analysis to some problems of dry friction. In: Zorski H (eds) Trends in applications of pure mathematics to mechanics II. Pitman, London, pp 263–280Google Scholar
  25. Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mech Mater 4(1): 67–93CrossRefGoogle Scholar
  26. Prandtl L (1924) Spannungsverteilung in plastischen Körpern. In: Biezeno CB, J.M.B. (eds) Proceedings of the first international congress for applied mechanics. Technische Boekhandel en Druckerij, Waltman J Jr. Delft, pp 43–54Google Scholar
  27. Rakotomanana RL, Curnier A, Leyvraz PF (1991) An objective anisotropic elastic plastic model and algorithm applicable to bone mechanics. Eur J Mech A/Solids 10(3): 327–342zbMATHGoogle Scholar
  28. Reuss A (1930) Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. Zeitschrift Angewandte Math Mech 10: 266–274zbMATHCrossRefGoogle Scholar
  29. Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2): 92–102CrossRefGoogle Scholar
  30. Rincón L (2003) Identification of a multiaxial failure criterion for human trabecular bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne. Available online at: http://library.epfl.ch/theses/?nr=2812. Accessed 4 June 2007
  31. Rockafellar RT (1970) Convex analysis. Princeton University Press, PrincetonzbMATHGoogle Scholar
  32. Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1): 101–118zbMATHCrossRefMathSciNetGoogle Scholar
  33. Simo JC, Hughes TJR (1999) Computational inelasticity. Springer, BerlinGoogle Scholar
  34. Timoshenko S (1968) Résistance des matériaux, vol 2. Dunod, ParisGoogle Scholar
  35. Wilkins ML (1964) Calculation of elastic-plastic flow. Methods Comput Phys 3: 211–263Google Scholar
  36. Ziegler H (1983) An introduction to thermomechanics, 2nd edn. North-Holland, AmsterdamzbMATHGoogle Scholar
  37. Zysset P (1994) A constitutive law for trabecular bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne. Available online at: http://library.epfl.ch/theses/?nr=1252. Accessed 4 June 2007
  38. Zysset PK, Curnier A (1996) An implicit projection algorithm for simultaneous flow of plasticity and damage in standard generalized materials. Int J Numer Methods Eng 39: 3065–3082zbMATHCrossRefGoogle Scholar
  39. Zysset PK, Curnier A (1995) An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater 21(4): 243–250CrossRefGoogle Scholar
  40. Zysset PK (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36: 1469–1485CrossRefGoogle Scholar
  41. Zysset PK, Rincón L (2006) An alternative fabric-based yield and failure criterion for trabecular bone. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue. Springer, Berlin, pp 457–470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • David Garcia
    • 1
  • Philippe K. Zysset
    • 2
    Email author
  • Mathieu Charlebois
    • 2
  • Alain Curnier
    • 1
  1. 1.Laboratory of Applied Mechanics and Reliability AnalysisEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Institute of Lightweight Design and Structural BiomechanicsVienna University of Technology (TU-Wien)WienAustria

Personalised recommendations