Rapid Growth of Cartilage Rudiments may Generate Perichondrial Structures by Mechanical Induction

  • J. H. Henderson
  • L. de la Fuente
  • D. Romero
  • C. I. Colnot
  • S. Huang
  • D. R. Carter
  • J. A. Helms
Original Paper

Abstract

Experimental and theoretical research suggest that mechanical stimuli may play a role in morphogenesis. We investigated whether theoretically predicted patterns of stress and strain generated during the growth of a skeletal condensation are similar to in vivo expression patterns of chondrogenic and osteogenic genes. The analysis showed that predicted patterns of compressive hydrostatic stress (pressure) correspond to the expression patterns of chondrogenic genes, and predicted patterns of tensile strain correspond to the expression patterns of osteogenic genes. Furthermore, the results of iterative application of the analysis suggest that stresses and strains generated by the growing condensation could promote the formation and refinement of stiff tissue surrounding the condensation, a prediction that is in agreement with an observed increase in collagen bundling surrounding the cartilage condensation, as indicated by picro-sirius red staining. These results are consistent with mechanical stimuli playing an inductive or maintenance role in the developing cartilage and associated perichondrium and bone collar. This theoretical analysis provides insight into the potential importance of mechanical stimuli during the growth of skeletogenic condensations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht U, Helms JA, Lin H, Eichele G (1997) In: Daston GP (eds) Molecular and Celluar methods in developmental toxicology. CRC Press, Boca Raton, pp 23–48Google Scholar
  2. Bertram JE, Polevoy Y, Cullinane DM (1998) Mechanics of avian fibrous periosteum: tensile and adhesion properties during growth. Bone 22(6):669–675CrossRefGoogle Scholar
  3. Brodland GW, Clausi DA (1994) Embryonic tissue morphogenesis modeled by FEM. J Biomech Eng 116(2):146–155CrossRefGoogle Scholar
  4. Chiquet M, Fambrough DM (1984) Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J Cell Biol 98(6):1926–1936CrossRefGoogle Scholar
  5. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop (355 Suppl):S132–S147Google Scholar
  6. Colnot C, de la Fuente L, Huang S, Hu D, Lu C, St-Jacques B, Helms JA (2005) Indian hedgehog synchronizes skeletal angiogenesis and perichondrial maturation with cartilage development. Development 132(5):1057–1067CrossRefGoogle Scholar
  7. Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A (1997) Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours [published erratum appears in Nature 1997 Dec 4;390(6659):536]. Nature 389(6653):876–881CrossRefGoogle Scholar
  8. Elder SH, Kimura JH, Soslowsky LJ, Lavagnino M, Goldstein SA (2000) Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res 18(1):78–86CrossRefGoogle Scholar
  9. Estes BT, Gimble JM, Guilak F (2004) Mechanical signals as regulators of stem cell fate. Curr Top Dev Biol 60:91–126CrossRefGoogle Scholar
  10. Folkman J, Greenspan HP (1975) Influence of geometry on control of cell growth. Biochim Biophys Acta 417(3–4):211–236Google Scholar
  11. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan CM, Carter DR, Longaker MT (2003) Mechanical strain affects dura mater biological processes: implications for immature calvarial healing. Plast Reconstr Surg 112(5):1312–1327CrossRefGoogle Scholar
  12. Giori NJ, Beaupre GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11(4):581–591CrossRefGoogle Scholar
  13. Henderson JH, Carter DR (2002) Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures. Bone 31(6):645–653CrossRefGoogle Scholar
  14. Kanno T, Takahashi T, Ariyoshi W, Tsujisawa T, Haga M, Nishihara T (2005) Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J Oral Maxillofac Surg 63(4):499–504CrossRefGoogle Scholar
  15. Loboa EG, Fang TD, Warren SM, Lindsey DP, Fong KD, Longaker MT, Carter DR (2004) Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model. Bone 34(2):336–343CrossRefGoogle Scholar
  16. Loboa EG, Wren TA, Beaupre GS, Carter DR (2003) Mechanobiology of soft skeletal tissue differentiation–a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications. Biomech Model Mechanobiol 2(2):83–96CrossRefGoogle Scholar
  17. Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP (2004) Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131(6):1309–1318CrossRefGoogle Scholar
  18. Mackie EJ, Thesleff I, Chiquet-Ehrismann R (1987) Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol 105(6 Pt 1):2569–2579CrossRefGoogle Scholar
  19. Maini PK, Solursh M (1991) Cellular mechanisms of pattern formation in the developing limb. Int Rev Cytol 129:91–133CrossRefGoogle Scholar
  20. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495CrossRefGoogle Scholar
  21. Moore KA, Polte T, Huang S, Shi B, Alsberg E, Sunday ME, Ingber DE (2005) Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 232(2):268–281CrossRefGoogle Scholar
  22. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102(33):11594–11599CrossRefGoogle Scholar
  23. Oster GF, Murray JD, Harris AK (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol 78:83–125Google Scholar
  24. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5):765–771CrossRefGoogle Scholar
  25. Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Perren SM, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff HK (eds) Current concepts of internal fixation of fractures. Springer, Berlin Heidelberg New York, vol. 23. pp 63–77Google Scholar
  27. Popowics TE, Zhu Z, Herring SW (2002) Mechanical properties of the periosteum in the pig, Sus scrofa. Arch Oral Biol 47(10):733–741CrossRefGoogle Scholar
  28. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Applied mechanics reviews 48(8):487–545CrossRefGoogle Scholar
  29. Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res 17(2):200–204CrossRefGoogle Scholar
  30. Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin HC (1998) Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci 111 (Pt 14):2067–2076Google Scholar
  31. Turing AM (1952) On the chemical basis of morphogenesis. Philos Trans R Soc London Ser B 237:37–73CrossRefGoogle Scholar
  32. von der Mark K, von der Mark H, Gay S (1976) Study of differential collagen synthesis during development of the chick embryo by immunofluroescence. II. Localization of type I and type II collagen during long bone development. Dev Biol 53(2):153–170CrossRefGoogle Scholar
  33. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25(1):1–47CrossRefGoogle Scholar
  34. Wolpert L (1981) Positional information and pattern formation. Philo Trans R Soc Lond Ser B Biol Sci 295(1078):441–450CrossRefGoogle Scholar
  35. Wolpert L (1994) Positional information and pattern formation in development. Develop Genet 15:485–490CrossRefGoogle Scholar
  36. Wolpert L (1996) One hundred years of positional information. Trends Genet 12(9):359–364CrossRefGoogle Scholar
  37. Wren TA, Beaupre GS, Carter DR (2000) Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev 37(2):135–143Google Scholar
  38. Yamada H (1970) Strength of biological materials. Gaynor Evans F (ed) Waverly, BaltimoreGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. H. Henderson
    • 1
  • L. de la Fuente
    • 2
  • D. Romero
    • 2
  • C. I. Colnot
    • 2
  • S. Huang
    • 2
  • D. R. Carter
    • 1
    • 3
  • J. A. Helms
    • 2
    • 4
  1. 1.Biomechanical Engineering Division, Mechanical Engineering DepartmentStanford UniversityStanfordUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoUSA
  3. 3.Rehabilitation R&D CenterVA Palo Alto Health Care SystemPalo AltoUSA
  4. 4.The Department of Plastic and Reconstructive SurgeryStanford University School of MedicineStanfordUSA

Personalised recommendations