Advertisement

An Introductory Review of Cell Mechanobiology

  • J H. -C. Wang
  • B P. Thampatty
Review article

Abstract

Mechanical loads induce changes in the structure, composition, and function of living tissues. Cells in tissues are responsible for these changes, which cause physiological or pathological alterations in the extracellular matrix (ECM). This article provides an introductory review of the mechanobiology of load-sensitive cells in vivo, which include fibroblasts, chondrocytes, osteoblasts, endothelial cells, and smooth muscle cells. Many studies have shown that mechanical loads affect diverse cellular functions, such as cell proliferation, ECM gene and protein expression, and the production of soluble factors. Major cellular components involved in the mechanotransduction mechanisms include the cytoskeleton, integrins, G proteins, receptor tyrosine kinases, mitogen-activated protein kinases, and stretch-activated ion channels. Future research in the area of cell mechanobiology will require novel experimental and theoretical methodologies to determine the type and magnitude of the forces experienced at the cellular and sub-cellular levels and to identify the force sensors/receptors that initiate the cascade of cellular and molecular events

Keywords

Curr Opin Cell Biol Human Vascular Smooth Muscle Cell Introductory Review Tissue Engineering Construct Cellular Mechanotransduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo AD, Bowser SS, Gerritsen ME, Bizios R (1993) Morphological and proliferative responses of endothelial cells to hydrostatic pressure: role of fibroblast growth factor. J Cell Physiol 157(3):603–614CrossRefPubMedGoogle Scholar
  2. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117(4):1183–1198PubMedGoogle Scholar
  3. Aigner T, Stove J (2003) Collagens–major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593CrossRefPubMedGoogle Scholar
  4. Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4(11):2868–2880PubMedGoogle Scholar
  5. Alberts B (1989) Molecular biology of the cell. Garland, New YorkGoogle Scholar
  6. Aplin AE, Howe AK, Juliano RL (1999) Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 11(6):737–744CrossRefPubMedGoogle Scholar
  7. Archambault J, Tsuzaki M, Herzog W, Banes AJ (2002) Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. J Orthop Res 20(1):36–39CrossRefPubMedGoogle Scholar
  8. Asanuma K, Magid, R, Johnson C, Nerem RM, Galis ZS (2003) Uniaxial strain upregulates matrix-degrading enzymes produced by human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 284(5):H1778–1784PubMedGoogle Scholar
  9. Ashworth JM (1973) Cell differentiation. Chapman and Hall, LondonGoogle Scholar
  10. Aubin JE, Triffitt JT (2002) Mesenchymal stem cells and osteoblast differentiation. Academic Press, San DiegoGoogle Scholar
  11. Aumailley M, Krieg T (1996) Laminins: a family of diverse multifunctional molecules of basement membranes. J Investig Dermatol 106(2):209–214CrossRefPubMedGoogle Scholar
  12. Aumailley M, Smyth N (1998) The role of laminins in basement membrane function. J Anat 193(Pt 1):1–21CrossRefPubMedGoogle Scholar
  13. Aumailley M, Gayraud B (1998) Structure and biological activity of the extracellular matrix. J Mol Med 76(3,4):253–265CrossRefPubMedGoogle Scholar
  14. Bag R, Suleman N, Guntupalli KK (2004) Respiratory failure in interstitial lung disease. Curr Opin Pulm Med 10(5):412–418CrossRefPubMedGoogle Scholar
  15. Baggiolini, M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters 307(1):97–101CrossRefPubMedGoogle Scholar
  16. Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T (1995) PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech 28(12):1505–1513CrossRefPubMedGoogle Scholar
  17. Barkhausen T, van Griensven M, Zeichen J, Bosch U (2003) Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol 55(2–3):153–158CrossRefPubMedGoogle Scholar
  18. Berry CC, Shelton JC, Bader DL, Lee DA (2003) Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng 9(4):613–624CrossRefPubMedGoogle Scholar
  19. Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer T (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95 (Pt 4):649–657PubMedGoogle Scholar
  20. Bishop JE, Butt R, Dawes K, Laurent G (1998) Mechanical load enhances the stimulatory effect of PDGF on pulmonary artery fibroblast procollagen synthesis. Chest 114(Suppl 1):25SGoogle Scholar
  21. Bonassar LJ, Grodzinsky AJ, Srinivasan A, Davila SG (2000) Trippel, S. B.: Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch Biochem Biophys 379(1):57–63CrossRefPubMedGoogle Scholar
  22. Bonassar LJ, Grodzinsky AJ, Frank EH, Davila SG, Bhaktav NR, Trippel SB (2001) The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res 19(1):11–17CrossRefPubMedGoogle Scholar
  23. Borer JS, Truter SL, Gupta A, Herrold EM, Carter JN, Lee E, Pitlor L (2004) Heart failure in aortic regurgitation: the role of primary fibrosis and its cellular and molecular pathophysiology. Adv Cardiol 41:16–24PubMedGoogle Scholar
  24. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200(4):423–428CrossRefPubMedGoogle Scholar
  25. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65(4):663–675CrossRefPubMedGoogle Scholar
  26. Breen EC (2000) Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol 88(1):203–209PubMedGoogle Scholar
  27. Brighton CT, Sennett BJ, Farmer JC, Iannotti JP, Hansen CA, Williams JL, Williamson J (1992) The inositol phosphate pathway as a mediator in the proliferative response of rat calvarial bone cells to cyclical biaxial mechanical strain. J Orthop Res 10(3):385–393CrossRefPubMedGoogle Scholar
  28. Brown JC, Timpl R (1995) The collagen superfamily. Int Arch Allerg Immunol 107(4):484–490Google Scholar
  29. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108(Pt 4):1497–1508PubMedGoogle Scholar
  30. Butt RP, Bishop JE (1997) Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J Mol Cell Cardiol 29(4):1141–1151CrossRefPubMedGoogle Scholar
  31. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65(1):40–51CrossRefPubMedGoogle Scholar
  32. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991) Oncogenes and signal transduction.[erratum appears in Cell 65(5): following 914]. Cell 64(2):281–302CrossRefPubMedGoogle Scholar
  33. Canty EG, Kadler KE (2002) Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol Mol Integr Physiol 133(4):979–985CrossRefGoogle Scholar
  34. Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69(1):116–122PubMedGoogle Scholar
  35. Chao MV (1992) Growth factor signaling: where is the specificity?. Cell 68(6):995–997CrossRefPubMedGoogle Scholar
  36. Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6:275–302CrossRefPubMedGoogle Scholar
  37. Chess PR, Toia L, Finkelstein JN (2000) Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells. Am J Physiol Lung Cell Mol Physiol 279(1):L43–51PubMedGoogle Scholar
  38. Chicurel ME, Chen CS, Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10(2):232–239CrossRefPubMedGoogle Scholar
  39. Chiquet M (1999) Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biology 18(5):417–426CrossRefPubMedGoogle Scholar
  40. Chiquet-Ehrismann R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200(4):488–499CrossRefPubMedGoogle Scholar
  41. Chiquet M, Sarasa-Renedo A, Tunc-Civelek V (2004) Induction of tenascin-C by cyclic tensile strain versus growth factors: distinct contributions by Rho/ROCK and MAPK signaling pathways. Biochim Biophys Acta 1693(3):193–204CrossRefPubMedGoogle Scholar
  42. Chowdhury TT, Bader DL, Shelton JC, Lee DA (2003) Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch Biochem Biophys 417(1):105–111CrossRefPubMedGoogle Scholar
  43. Clark CB, McKnight NL, Frangos JA (2002) Strain and strain rate activation of G proteins in human endothelial cells. Biochem Biophys Res Commun 299(2):258–262CrossRefPubMedGoogle Scholar
  44. Cobb MH, Boulton TG, Robbins DJ (1991) Extracellular signal-regulated kinases: ERKs in progress. Cell Regul 2(12):965–978PubMedGoogle Scholar
  45. Cobb MH, Robbins DJ, Boulton TG (1991) ERKs, extracellular signal-regulated MAP-2 kinases. Curr Opin Cell Biol 3(6):1025–1032CrossRefPubMedGoogle Scholar
  46. Coppolino MG, Dedhar S (2000) Bi-directional signal transduction by integrin receptors. Int J Biochem Cell Biol 32(2):171–188CrossRefPubMedGoogle Scholar
  47. Dartsch PC, Hammerle H (1986) Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur J Cell Biol 41(2):339–346PubMedGoogle Scholar
  48. Dartsch PC, Hammerle H, Betz E (1986) Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta Anat 125(2):108–113PubMedGoogle Scholar
  49. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560PubMedGoogle Scholar
  50. Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A (2002) Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 20(4):842–848CrossRefPubMedGoogle Scholar
  51. Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20(5 Suppl 27):S1–13Google Scholar
  52. Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57(5): 344–358CrossRefPubMedGoogle Scholar
  53. Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI (2000) Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. FASEB Journal 14(12):1775–1783CrossRefPubMedGoogle Scholar
  54. Eckes B, Krieg T (2004) Regulation of connective tissue homeostasis in the skin by mechanical forces. Clin Exp Rheumatol 22(3 Suppl 33):S73–76PubMedGoogle Scholar
  55. Elder SH, Kimura JH, Soslowsky LJ, Lavagnino M, Goldstein SA (2000) Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res 18(1):78–86CrossRefPubMedGoogle Scholar
  56. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6): 476–482CrossRefPubMedGoogle Scholar
  57. Elfervig MK, Minchew JT, Francke E, Tsuzaki M, Banes AJ (2001) IL-1beta sensitizes intervertebral disc annulus cells to fluid-induced shear stress. J Cell Biochem 82(2):290–298CrossRefPubMedGoogle Scholar
  58. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development.[comment]. Cell 80(3):371–378CrossRefPubMedGoogle Scholar
  59. Eyre DR (2004) Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res (427 Suppl):S118–122CrossRefGoogle Scholar
  60. Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 278(51):50940–50948CrossRefPubMedGoogle Scholar
  61. Feng Y, Yang JH, Huang H, Kennedy SP, Turi TG, Thompson JF, Libby P, Lee RT (1999) Transcriptional profile of mechanically induced genes in human vascular smooth muscle cells. Circ Res 85(12): 1118–1123PubMedGoogle Scholar
  62. Fowlkes JL, Enghild JJ, Suzuki K, Nagase H (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem 269(41):25742–25746PubMedGoogle Scholar
  63. Funa K, Uramoto H (2003) Regulatory mechanisms for the expression and activity of platelet-derived growth factor receptor. Acta Biochim Pol 50(3):647–658PubMedGoogle Scholar
  64. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90(3):251–262PubMedGoogle Scholar
  65. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Amento E, Libby P (1994) Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75(1):181–189PubMedGoogle Scholar
  66. Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967–979CrossRefPubMedGoogle Scholar
  67. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032CrossRefPubMedGoogle Scholar
  68. Gloe T, Sohn HY, Meininger GA, Pohl U (2002) Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J Biol Chem 277(26):23453–23458CrossRefPubMedGoogle Scholar
  69. Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Ann Rev Biomedical Engineering 2 (2000): 691–713CrossRefGoogle Scholar
  70. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92(11):e80–86CrossRefPubMedGoogle Scholar
  71. Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79(4):834– 839Google Scholar
  72. Gudi SR, Lee AA, Clark CB, Frangos JA (1998) Equibiaxial strain and strain rate stimulate early activation of G proteins in cardiac fibroblasts. Am J Physiol 274(5 Pt 1):C1424–1428PubMedGoogle Scholar
  73. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81(2):685–740PubMedGoogle Scholar
  74. Hansen CA, Schroering AG, Carey DJ, Robishaw JD (1994) Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. J Cell Biol 126(3):811–819CrossRefPubMedGoogle Scholar
  75. Harter LV, Hruska KA, Duncan RL (1995) Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 136(2):528–535CrossRefPubMedGoogle Scholar
  76. He Y, Macarak EJ, Korostoff JM, Howard PS (2004) Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect Tissue Res 45(1):28–39CrossRefPubMedGoogle Scholar
  77. Hebert CA, Baker JB (1993) Interleukin-8: a review. Cancer Investigation 11(6):743–750PubMedGoogle Scholar
  78. Holmvall K, Camper L, Johansson S, Kimura JH, Lundgren-Akerlund E (1995) Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res 221(2):496–503CrossRefPubMedGoogle Scholar
  79. Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res 33(8):500–508PubMedCrossRefGoogle Scholar
  80. Hsieh AH, Tsai CM, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KL (2000) Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18(2):220–227CrossRefPubMedGoogle Scholar
  81. Hubmayr RD, Shore SA, Fredberg JJ, Planus E, Panettieri RA Jr, Moller W, Heyder J, Wang N (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Physiol 271(5 Pt 1):C1660–1668PubMedGoogle Scholar
  82. Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE 2004(249):RE12CrossRefPubMedGoogle Scholar
  83. Hulmes DJ (1992) The collagen superfamily–diverse structures and assemblies. Essays Biochem 27:49–67PubMedGoogle Scholar
  84. Humphrey JD (2001) Stress, strain, and mechanotransduction in cells. J Biomech Eng 123(6):638–641CrossRefPubMedGoogle Scholar
  85. Hunter CJ, Imler SM, Malaviya P, Nerem RM, Levenston ME (2002) Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23(4):1249–1259CrossRefPubMedGoogle Scholar
  86. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25CrossRefPubMedGoogle Scholar
  87. Iannone F, Lapadula G (2003) The pathophysiology of osteoarthritis. Aging Clin Exp Res 15(5):364–372PubMedGoogle Scholar
  88. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochemical Journal 322(Pt 3):809–814PubMedGoogle Scholar
  89. Ingber D (1991) Integrins as mechanochemical transducers. Curr Opin Cell Biol 3(5):841–848CrossRefPubMedMathSciNetGoogle Scholar
  90. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599CrossRefPubMedGoogle Scholar
  91. Ingber DE (1998) Cellular basis of mechanotransduction. Biol Bull 194(3):323–325; discussion 325–327PubMedGoogle Scholar
  92. Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35(8):564–577CrossRefPubMedGoogle Scholar
  93. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Ann Rev Biochem 67:609–652CrossRefPubMedGoogle Scholar
  94. Iqbal J, Zaidi M (2005) Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 328(3):751–755CrossRefPubMedGoogle Scholar
  95. Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, Riley G (2001) Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biology 20(3):159–169CrossRefPubMedGoogle Scholar
  96. Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y (2000) Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol - Heart Circ Physiol 278(2):H521–529PubMedGoogle Scholar
  97. Jackson CL, Schwartz SM (1992) Pharmacology of smooth muscle cell replication. Hypertension 20(6):713–736PubMedGoogle Scholar
  98. Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Integrin-mediated echanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. In: Proceedings of the national academy of sciences of the United States of America vol 98(3), pp 1042–1046Google Scholar
  99. Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29(7):364–370CrossRefPubMedGoogle Scholar
  100. Jin M, Emkey GR, Siparsky P, Trippel SB, Grodzinsky AJ (2003) Combined effects of dynamic tissue shear deformation and insulin-like growth factor I on chondrocyte biosynthesis in cartilage explants. Arch Bioch Biophys 414(2):223–231CrossRefGoogle Scholar
  101. Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM (1997) Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem 272(2):1395–1401CrossRefPubMedGoogle Scholar
  102. Joki N, Kaname S, Hirakata M, Hori Y, Yamaguchi T, Fujita T, Katoh T, Kurokawa K (2000) Tyrosine-kinase dependent TGF-beta and extracellular matrix expression by mechanical stretch in vascular smooth muscle cells. Hypertens Res - Clin Exp 23(2):91–99Google Scholar
  103. Jones DB, Nolte H, Scholubbers JG, Turner E, Veltel D (1991) Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 12(2):101–110CrossRefPubMedGoogle Scholar
  104. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585CrossRefPubMedGoogle Scholar
  105. Kakisis JD, Liapis CD, Sumpio BE (2004) Effects of cyclic strain on vascular cells. Endothelium 11(1):17–28CrossRefPubMedGoogle Scholar
  106. Karin M (1992) Signal transduction from cell surface to nucleus in development and disease. FASEB Journal 6(8):2581–2590PubMedGoogle Scholar
  107. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4):389–406CrossRefPubMedGoogle Scholar
  108. Kartsogiannis V, Ng KW (2004) Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 228(1–2): 79–102CrossRefPubMedGoogle Scholar
  109. Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33(1):45–51CrossRefPubMedGoogle Scholar
  110. Kaspar D, Seidl W, Neidlinger-Wilke C, Beck A, Claes L, Ignatius A (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35(7):873–880CrossRefPubMedGoogle Scholar
  111. Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279(13):12001–12004CrossRefPubMedGoogle Scholar
  112. Kim SJ, Romeo D, Yoo YD, Park K (1994) Transforming growth factor-beta: expression in normal and pathological conditions. Horm Res 42(1–2):5–8PubMedGoogle Scholar
  113. Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17(10):979–983CrossRefPubMedGoogle Scholar
  114. Kirber MT, Guerrero-Hernandez A, Bowman DS, Fogarty KE, Tuft RA, Singer JJ, Fay F. S.: Multiple pathways responsible for the stretch-induced increase in Ca2+ concentration in toad stomach smooth muscle cells. J Physiol 524(Pt 1):3–17Google Scholar
  115. Kohler R, Schonfelder G, Hopp H, Distler A, Hoyer J (1998) Stretch-activated cation channel in human umbilical vein endothelium in normal pregnancy and in preeclampsia. J Hypertens 16(8):1149–1156CrossRefPubMedGoogle Scholar
  116. Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y (1996) Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J 10(5):631–636PubMedGoogle Scholar
  117. Kulik TJ, Alvarado SP (1993) Effect of stretch on growth and collagen synthesis in cultured rat and lamb pulmonary arterial smooth muscle cells. J Cell Physiol 157(3):615–624CrossRefPubMedGoogle Scholar
  118. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J (1992) Raf-1 activates MAP kinase-kinase. Nature 358(6385):417–421CrossRefPubMedGoogle Scholar
  119. Labat-Robert J, Bihari-Varga M, Robert L (1990) Extracellular matrix. FEBS Letters 268(2):386–393CrossRefPubMedGoogle Scholar
  120. Lammerding J, Kamm RD, Lee RT (2004) Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci 1015:53–70CrossRefPubMedGoogle Scholar
  121. Lane Smith R, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ (2000) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37(1–2):95–107PubMedGoogle Scholar
  122. Lee AA, Delhaas T, McCulloch AD, Villarreal FJ (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31(10):1833–1843CrossRefPubMedGoogle Scholar
  123. Lee CR, Grodzinsky AJ, Spector M (2003) Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mat Res 64A(3):560–569CrossRefGoogle Scholar
  124. Lee RT, Yamamoto C, Feng Y, Potter-Perigo S, Briggs WH, Landschulz KT, Turi TG, Thompson JF, Libby P, Wight TN (2001) Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem 276(17):13847–13851PubMedGoogle Scholar
  125. Leung DY, Glagov S, Mathews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191(4226):475–477PubMedGoogle Scholar
  126. Li Q, Muragaki Y, Ueno H, Ooshima A (1997) Stretch-induced proliferation of cultured vascular smooth muscle cells and a possible involvement of local renin-angiotensin system and platelet-derived growth factor (PDGF). Hypertens Res 20(3):217–223PubMedGoogle Scholar
  127. Li Q, Muragaki Y, Hatamura I, Ueno H, Ooshima A (1998) Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-beta. J Vasc Res 35(2):93–103CrossRefPubMedGoogle Scholar
  128. Lijnen HR (2003) Metalloproteinases in development and progression of vascular disease. Pathophysiol Haemost Thromb 33(5–6): 275–281CrossRefPubMedGoogle Scholar
  129. Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8(11):437–441CrossRefPubMedGoogle Scholar
  130. Luo W, Guo C, Zheng J, Chen TL, Wang PY, Vertel BM, Tanzer ML (2000) Aggrecan from start to finish. J Bone Miner Metab 18(2):51–56CrossRefPubMedGoogle Scholar
  131. MacKenna DA, Dolfi F, Vuori K, Ruoslahti E (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101(2):301–310PubMedGoogle Scholar
  132. MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46(2):257–263CrossRefPubMedGoogle Scholar
  133. Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35(9):1301–1305CrossRefPubMedGoogle Scholar
  134. Malek AM, Izumo S (1995) Control of endothelial cell gene expression by flow. J Biomech 28(12):1515–1528CrossRefPubMedGoogle Scholar
  135. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. In: Proceedings of the National academy of Sciences of the United States of America Vol. 94(3), pp 849–854Google Scholar
  136. Mao JJ, Nah HD (2004) Growth and development: hereditary and mechanical modulations. Am J Ortho Dentofacial Orthop 125(6):676–689CrossRefGoogle Scholar
  137. Mathews MB (1975) Connective tissue: macromolecular structure and evolution. Springer Berlin Heidelberg, New YorkGoogle Scholar
  138. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260CrossRefPubMedGoogle Scholar
  139. Mauck RL, Seyhan SL, Ateshian GA, Hung CT (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30(8):1046–1056CrossRefPubMedGoogle Scholar
  140. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4):597–611CrossRefPubMedGoogle Scholar
  141. Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil 11(12):879–890CrossRefPubMedGoogle Scholar
  142. McCawley LJ, Matrisian LM (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Molecular Medicine Today 6(4):149–156CrossRefPubMedGoogle Scholar
  143. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13(5):534–540Google Scholar
  144. Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108(1):191–197CrossRefPubMedGoogle Scholar
  145. Michiels C (2003) Endothelial cell functions. J Cell Physiol 196(3):430–443CrossRefPubMedGoogle Scholar
  146. Mostafavi-Pour Z, Askari JA, Parkinson SJ, Parker PJ, Ng TT, Humphries MJ (2003) Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol 161(1):155–167CrossRefPubMedGoogle Scholar
  147. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16(5):558–564CrossRefPubMedGoogle Scholar
  148. Mow VC (1994) Cell mechanics and cellular engineering. Springer Berlin Heidelberg, New YorkGoogle Scholar
  149. Mullender M, ElHaj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42(1):14–21PubMedGoogle Scholar
  150. Murata M, Bonassar LJ, Wright M, Mankin HJ, Towle CA (2003) A role for the interleukin-1 receptor in the pathway linking static mechanical compression to decreased proteoglycan synthesis in surface articular cartilage. Arch Biochem Biophys 413(2):229–235CrossRefPubMedGoogle Scholar
  151. Murray DW, Rushton N (1990) The effect of strain on bone cell prostaglandin E2 release: a new experimental method. Calcif Tissue Int 47(1):35–39PubMedGoogle Scholar
  152. Naruse K, Sokabe M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264(4 Pt 1):C1037–1044PubMedGoogle Scholar
  153. Neidlinger-Wilke C, Wilke HJ, Claes L (1994) Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res 12(1):70–78CrossRefPubMedGoogle Scholar
  154. Nishimoto N, Kishimoto T (2004) Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol 4(4):386–391CrossRefPubMedGoogle Scholar
  155. O’Callaghan CJ, Williams B (2000) Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta(1). Hypertension 36(3):319–324PubMedGoogle Scholar
  156. Oddou C, Wendling S, Petite H, Meunier A (2000) Cell mechanotransduction and interactions with biological tissues. Biorheology 37(1,2):17–25PubMedGoogle Scholar
  157. von Offenberg Sweeney N, Cummins PM, Birney YA, Cullen JP, Redmond EM, Cahill PA (2004) Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovasc Res 63(4):625–634CrossRefPubMedGoogle Scholar
  158. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2(3) (2001): Reviews3005Google Scholar
  159. Osol G (1995) Mechanotransduction by vascular smooth muscle. J Vasc Res 32(5):275–292PubMedGoogle Scholar
  160. Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22(1):51–86CrossRefPubMedGoogle Scholar
  161. Owens GK (1996) Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells. Circ Res 79(5):1054–1055PubMedGoogle Scholar
  162. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology & Bioengineering 88(3):359–368Google Scholar
  163. Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300(1):458–465CrossRefPubMedGoogle Scholar
  164. Pavalko FM, Chen NX, Turner CH, Burr DB, Atkinson S, Hsieh YF, Qiu J, Duncan RL (1998) Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am J Physiol 275(6 Pt 1):C1591–1601PubMedGoogle Scholar
  165. Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70(2):157–164PubMedGoogle Scholar
  166. Poole AR (1986) Proteoglycans in health and disease: structures and functions. Biochem J 236(1):1–14PubMedGoogle Scholar
  167. Resnick N, Gimbrone MA Jr (1995) Hemodynamic forces are complex regulators of endothelial gene expression. Faseb J 9(10):874–882PubMedGoogle Scholar
  168. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81(3): 177–199CrossRefPubMedGoogle Scholar
  169. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399CrossRefPubMedGoogle Scholar
  170. van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB Journal 5(13):2814–2823PubMedGoogle Scholar
  171. Riley GP, Curry V, DeGroot J, van El B, Verzijl N, Hazleman BL, Bank RA (2002) Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biology 21(2):185–195CrossRefPubMedGoogle Scholar
  172. Ross R (1986) The pathogenesis of atherosclerosis–an update. N Engl J Med 314(8):488–500PubMedCrossRefGoogle Scholar
  173. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801–809CrossRefPubMedGoogle Scholar
  174. Ruknudin A, Sachs F, Bustamante JO (1993) Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol 264(3 Pt 2):H960–972PubMedGoogle Scholar
  175. Ruoslahti E (1988) Structure and biology of proteoglycans. Ann Rev Cell Biol 4:229–255PubMedGoogle Scholar
  176. Sachs F (1992) Stretch-sensitive ion channels: an update. Soc Gen Physiol Ser 47:241–260PubMedGoogle Scholar
  177. Sadoshima J, Izumo S (1997). The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59: 551–571CrossRefPubMedGoogle Scholar
  178. Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP (1993) Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol 123(4):977–991CrossRefPubMedGoogle Scholar
  179. Schwartz NB, Pirok EW 3rd, Mensch JR Jr, Domowicz MS (1999) Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. Prog Nucleic Acid Res Mol Biol 62:177–225PubMedCrossRefGoogle Scholar
  180. Seiki M (2002) The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 14(5):624–632CrossRefPubMedGoogle Scholar
  181. Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28(4):351–362CrossRefPubMedGoogle Scholar
  182. Seliktar D, Nerem RM, Galis ZS (2001) The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann Biomed Eng 29(11):923–934CrossRefPubMedGoogle Scholar
  183. Shen J, Luscinskas FW, Connolly A, Dewey CF Jr, Gimbrone MA Jr (1992) Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol 262(2 Pt 1):C384–390PubMedGoogle Scholar
  184. Sigurdson W, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262(4 Pt 2):H1110–1115PubMedGoogle Scholar
  185. Silver FH, Kato YP, Ohno M, Wasserman AJ (1992) Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J Long-Term Eff Med Implants 2(2–3):165–198PubMedGoogle Scholar
  186. Silver FH, Siperko LM, Seehra GP (2003) Mechanobiology of force transduction in dermal tissue. Skin Res Technol 9(1):3–23CrossRefPubMedGoogle Scholar
  187. Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U (2001) Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol 86(1):48–52PubMedGoogle Scholar
  188. Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, Caler WE, Sandell LJ, Schurman DJ (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res 14(1):53–60CrossRefPubMedGoogle Scholar
  189. Sternlicht MD, Werb Z (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell& Developmental Biology 17:463–516Google Scholar
  190. Stockwell R.A. (1979) Biology of cartilage cells. Cambridge Univ. Press., Cambridge, New YorkGoogle Scholar
  191. Sumpio BE, Banes AJ, Link WG, Johnson G Jr (1988) Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch Surg 123(10):1233–1236PubMedGoogle Scholar
  192. Sumpio BE, Riley JT, Dardik A (2002) Cells in focus: endothelial cell. Int J Biochem Cell Biol 34(12):1508–1512CrossRefPubMedGoogle Scholar
  193. Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin HC (1998) Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchym al cells. J Cell Sci 111(Pt 14):2067–2076PubMedGoogle Scholar
  194. Tanabe Y, Saito M, Ueno A, Nakamura M, Takeishi K, Nakayama K (2000) Mechanical stretch augments PDGF receptor beta expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells. Mol Cell Biochem 215(1–2):103–113CrossRefPubMedGoogle Scholar
  195. Tipton CM, Vailas AC, Matthes RD (1986) Experimental studies on the influences of physical activity on ligaments, tendons and joints: a brief review. Acta Med Scand Suppl 711:157–168PubMedGoogle Scholar
  196. Toborek M, Kaiser S (1999) Endothelial cell functions. Relationship to atherogenesis. Basic Res Cardiol 94(5):295–314CrossRefGoogle Scholar
  197. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews. Cancer 4(7):528–539CrossRefPubMedGoogle Scholar
  198. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3(6):346–355CrossRefPubMedGoogle Scholar
  199. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61(2):203–212CrossRefPubMedGoogle Scholar
  200. Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S (2002) Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arterioscler Thromb Vasc Biol 22(1):69–75CrossRefPubMedGoogle Scholar
  201. Verheul HM, Pinedo HM (2003) Vascular endothelial growth factor and its inhibitors. Drugs Today (Barc) 39 Suppl C:81–93Google Scholar
  202. Villarreal FJ, Dillmann WH (1992) Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Am J Physiol 262(6 Pt 2):H1861–1866PubMedGoogle Scholar
  203. Visse R., Nagase H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839CrossRefPubMedGoogle Scholar
  204. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14(17):2123–2133CrossRefPubMedGoogle Scholar
  205. Wang JH (2005) Mechanobiology of tendon. J Biomech (in press)Google Scholar
  206. Wang H, Ip W, Boissy R, Grood ES (1995) Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J Biomech 28(12):1543–1552CrossRefPubMedGoogle Scholar
  207. Wang JH, Goldschmidt-Clermont P, Moldovan N, Yin FC (2000) Leukotrienes and tyrosine phosphorylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells. Cell Motil Cytoskeleton 46(2):137–145CrossRefPubMedGoogle Scholar
  208. Wang JH, Goldschmidt-Clermont P, Wille J, Yin, FC (2001) Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J Biomech 34(12):1563–1572CrossRefPubMedGoogle Scholar
  209. Wang J, Su M, Fan J, Seth A, McCulloch CA (2002) Transcriptional regulation of a contractile gene by mechanical forces applied through integrins in osteoblasts. J Biol Chem 277(25):22889–22895CrossRefPubMedGoogle Scholar
  210. Wang BW, Chang H, Lin S, Kuan P, Shyu KG (2003) Induction of matrix metalloproteinases-14 and −2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res 59(2):460–469CrossRefPubMedGoogle Scholar
  211. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111): 1124–1127PubMedMathSciNetGoogle Scholar
  212. Wang JH, Grood ES (2000) The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect Tissue Res 41(1):29–36PubMedGoogle Scholar
  213. Werb Z, Chin JR (1998) Extracellular matrix remodeling during morphogenesis. Ann NY Acad Sci 857:110–118CrossRefPubMedGoogle Scholar
  214. Williams B (1998) Mechanical influences on vascular smooth muscle cell function. J Hypertens 16(12 Pt 2):1921–1929CrossRefPubMedGoogle Scholar
  215. Wilson E, Sudhir K, Ives HE (1995) Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Inves 96(5): 2364– 2372Google Scholar
  216. Wolvekamp MC, Marquet RL (1990) Interleukin-6: historical background, genetics and biological significance. Immunol Lett 24(1): 1–9CrossRefPubMedGoogle Scholar
  217. Woo SL, Gomez MA, Woo YK, Akeson WH (1982) Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19(3):397–408PubMedGoogle Scholar
  218. Woodell JE, LaBerge M, Langan EM 3rd, Hilderman RH (2003) In vitro strain-induced endothelial cell dysfunction determined by DNA synthesis. In: Proceedings of the Institution of Mechanical Engineers. Part H - J Engineering in Medicine vol 217(1) pp 13–20Google Scholar
  219. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamemoto H, Kadowaki T, Nagai R, Yazaki Y (1993) Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268(16):12069–12076PubMedGoogle Scholar
  220. Yang G, Crawford RC, Wang JH (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37(10):1543–1550CrossRefPubMedGoogle Scholar
  221. Yang JH, Briggs WH, Libby P, Lee RT (1998) Small mechanical strains selectively suppress matrix metalloproteinase-1 expression by human vascular smooth muscle cells. J Biol Chem 273(11):6550–6555CrossRefPubMedGoogle Scholar
  222. Yasuda T, Kondo S, Homma T, Harris RC (1996) Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98(9):1991–2000PubMedGoogle Scholar
  223. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176PubMedGoogle Scholar
  224. Yurchenco PD, Birk DE, Mecham RP (1994) Extracellular matrix assembly and structure. Academic Press, San DiegoGoogle Scholar
  225. Zeichen J, van Griensven M, Bosch U (2000) The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 28(6):888–892PubMedGoogle Scholar
  226. Ziegler T, Bouzourene K, Harrison VJ, Brunner HR, Hayoz D (1998) Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol (Online) 18(5): 686–692Google Scholar
  227. Zwahlen R, Walz A, Rot A (1993) In vitro and in vivo activity and pathophysiology of human interleukin-8 and related peptides. Int Rev Exp Pathol 34(Pt B):27–42PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering and Mechanical EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations