Biomechanics and Modeling in Mechanobiology

, Volume 3, Issue 1, pp 48–55 | Cite as

Influence of zero flow pressure on fractional flow reserve

  • Tom E. ClaessensEmail author
  • Paul L. Van Herck
  • Koen S. Matthys
  • Patrick Segers
  • Christiaan J. Vrints
  • Pascal R. Verdonck
Original Paper


Fractional flow reserve (FFR) is a commonly used index to assess the functional severity of a coronary artery stenosis. It is conventionally calculated as the ratio of the pressure distal (Pd) and proximal (Pa) to the stenosis (FFR=Pd/Pa). We hypothesize that the presence of a zero flow pressure (Pzf), requires a modification of this equation. Using a dynamic hydraulic bench model of the coronary circulation, which allows one to incorporate an adjustable Pzf, we studied the relation between pressure-derived FFR=Pd/Pa, flow-derived true FFRQ=QS/QN (=ratio of flow through a stenosed vessel to flow through a normal vessel), and the corrected pressure-derived FFRC=(PdPzf)/(PaPzf) under physiological aortic pressures (70 mmHg, 90 mmHg, and 110 mmHg). Imposed Pzf values varied between 0 mmHg and 30 mmHg. FFRC was in good agreement with FFRQ, whereas FFR consistently overestimated FFRQ. This overestimation increased when Pzf increased, or when Pa decreased, and could be as high as 56% (Pzf=30 mmHg and Pa=70 mmHg). According to our experimental study, calculating the corrected FFRC instead of FFR, if Pzf is known, provides a physiologically more accurate evaluation of the functional severity of a coronary artery stenosis.


Fractional Flow Reserve Aortic Pressure Coronary Circulation Flow Relation Coronary Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Stefaan Bliki, Marcel Anteunis, and Martin Vandaele for technical assistance during the realization of the hydraulic model of the coronary circulation. Tom Claessens and Koen Matthys are funded by specialization grants of the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT 021228 and IWT 993175). Paul Van Herck is a research assistant of the Fund for Scientific Research—Flanders (F.W.O.—Vlaanderen). Patrick Segers receives a post-doctoral grant from the Fund for Scientific Research in Flanders (FWO—Vlaanderen).


  1. Bellamy RF (1978) Diastolic coronary artery pressure-flow relations in the dog. Circ Res 43:92–101CrossRefGoogle Scholar
  2. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefGoogle Scholar
  3. Burton AC (1954) Relation of structure to function of walls of bloods vessels. Physiol Rev 34:619–652CrossRefGoogle Scholar
  4. Chamuleau SA, Siebes M, Meuwissen M, Koch KT, Spaan JA, Piek JJ (2003) Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. Am J Physiol Heart Circ Physiol 285:H2194–H2200CrossRefGoogle Scholar
  5. De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR (1995) Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 92:39–46CrossRefGoogle Scholar
  6. Dole WP, Richards KL, Hartley CJ, Alexander GM, Campbell AB, Bishop VS (1984) Diastolic coronary artery pressure-flow velocity relationships in conscious man. Cardiovasc Res 18:548–554CrossRefGoogle Scholar
  7. Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36:753–760CrossRefGoogle Scholar
  8. Fearon WF, Luna J, Samady H, Powers ER, Feldman T, Dib N, Tuzcu EM, Cleman MW, Chou TM, Cohen DJ, Ragosta M, Takagi A, Jeremias A, Fitzgerald PJ, Yeung AC, Kern MJ, Yock PG (2001) Fractional flow reserve compared with intravascular ultrasound guidance for optimizing stent deployment. Circulation 104:1917–1922CrossRefGoogle Scholar
  9. Klocke FJ, Mates RE, Canty JM Jr, Ellis AK (1985) Coronary pressure-flow relationships: controversial issues and probable implications. Circ Res 56:310–323CrossRefGoogle Scholar
  10. Matthys K, Carlier S, Segers P, Ligthart J, Sianos G, Serrano P, Verdonck PR, Serruys PW (2001) In vitro study of FFR, QCA, and IVUS for the assessment of optimal stent deployment. Catheter Cardiovasc Interv 54:363–375CrossRefGoogle Scholar
  11. Meneveau N, Di Mario C, Gil R, de Jaegere P, de Feyter PJ, Roelandt J, Serruys PW (1993) Instantaneous pressure-velocity relationship of the coronary flow, alternative to coronary reserve measurement: a feasibility study and reproducibility of the method. Arch Mal Coeur Vaiss 86:975–985Google Scholar
  12. Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, Bax M, de Jong A, Spaan JA, Piek JJ (2001) Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 103:184–187CrossRefGoogle Scholar
  13. Meuwissen M, Siebes M, Chamuleau SA, van Eck-Smit BL, Koch KT, de Winter RJ, Tijssen JG, Spaan JA, Piek JJ (2002) Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation 106:441–446CrossRefGoogle Scholar
  14. Permut S, Riley RL (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol 18:924–932CrossRefGoogle Scholar
  15. Pijls NHJ, de Bruyne B (1997) Coronary pressure. Kluwer, DordrechtCrossRefGoogle Scholar
  16. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87:1354–1367CrossRefGoogle Scholar
  17. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, el Gamal MI (1995) Fractional flow reserve: a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92:3183–3193CrossRefGoogle Scholar
  18. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708CrossRefGoogle Scholar
  19. Segers P, Fostier G, Neckebroeck J, Verdonck P (1999) Assessing coronary artery stenosis severity: in vitro validation of the concept of fractional flow reserve. Catheter Cardiovasc Interv 46:375–379CrossRefGoogle Scholar
  20. Siebes M, Chamuleau SA, Meuwissen M, Piek JJ, Spaan JA (2002) Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model. Am J Physiol Heart Circ Physiol 283:H1462–H1470CrossRefGoogle Scholar
  21. Siebes M, Verhoeff BJ, Meuwissen M, de Winter RJ, Spaan JA, Piek JJ (2004) Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation 109:756–762CrossRefGoogle Scholar
  22. Spaan JA (1985) Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 56:293–309CrossRefGoogle Scholar
  23. Tanaka N, Takazawa K, Takeda K, Aikawa M, Shindo N, Amaya K, Kobori Y, Yamashina A (2003) Coronary flow-pressure relationship distal to epicardial stenosis. Circ J 67:525–529CrossRefGoogle Scholar
  24. Verdonck P, Kleven A, Verhoeven R, Angelsen B, Vandenbogaerde J (1992) Computer-controlled in vitro model of the human left heart. Med Biol Eng Comput 30:656–659CrossRefGoogle Scholar
  25. Yanagisawa H, Chikamori T, Tanaka N, Hatano T, Morishima T, Hida S, Iino H, Amaya K, Takazawa K, Yamashina A (2002) Correlation between thallium-201 myocardial perfusion defects and the functional severity of coronary artery stenosis as assessed by pressure- derived myocardial fractional flow reserve. Circ J 66:1105–1109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tom E. Claessens
    • 1
    Email author
  • Paul L. Van Herck
    • 2
  • Koen S. Matthys
    • 1
  • Patrick Segers
    • 1
  • Christiaan J. Vrints
    • 2
  • Pascal R. Verdonck
    • 1
  1. 1.Institute of Biomedical Technology (IBITECH), Hydraulics LaboratoryGhent UniversityGhentBelgium
  2. 2.Department of Cardiology, Antwerp UniversityAntwerp University HospitalEdegemBelgium

Personalised recommendations