Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall

  • Francesco MigliavaccaEmail author
  • Lorenza Petrini
  • Paolo Massarotti
  • Silvia Schievano
  • Ferdinando Auricchio
  • Gabriele Dubini
Original Paper


Balloon-expandable and self-expandable stents are the two types of coronary stents available. Basically, they differ in the modality of expansion.

The present study analyses the stress state induced on the vascular wall, by the expansion of balloon- and self-expandable stents, using the finite element method. Indeed, modified mechanical stress state is in part responsible in the restenosis process. The balloon-expandable stents herein investigated are assumed to be made of stainless steel, while the self-expandable stents are made of a shape memory alloy. The effects of the severity of the coronary stenosis, the atherosclerotic plaque stiffness and the stent design are investigated. Comparing the self-expandable stent with the balloon-expandable one, the former induces fewer stresses and lower damage to the vessel, but, on the other hand, its lower stiffness induces a lower capability to restore vasal lumen and to contrast arterial elastic recoil.


Austenite Martensite Shape Memory Alloy NiTi Alloy Neointimal Hyperplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Auricchio F, Petrini L (2002) Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int J Num Meth Eng 55:1255–1284CrossRefGoogle Scholar
  2. Auricchio F, Di Loreto M, Sacco E (2001) Finite-element analysis of a stenotic revascularization through a stent insertion. Comput Meth Biomech Biomed Eng 4:249–264Google Scholar
  3. Bassiouny HS, Zarins CK, Kadowaki MH, Glagov S (1994) Hemodynamic stress and experimental aortoiliac atherosclerosis. J Vasc Surg 19:426–434PubMedGoogle Scholar
  4. Carter AJ, Scott D, Laird JR, Bailey L, Kovach JA, Hoopes TG, Pierce K, Heath K, Hess K, Farb A, Virmani R (1998) Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding nitinol stent in an experimental model. Cathet Cardiovasc Diagn 44:193-201CrossRefPubMedGoogle Scholar
  5. Degertekin M, Regar E, Tanabe K, Lemos P, Lee CH, Smits P, de Feyter P, Bruining N, Sousa E, Abizaid A, Ligthart J, Serruys PW (2003) Evaluation of coronary remodeling after sirolimus-eluting stent implantation by serial three-dimensional intravascular ultrasound. Am J Cardiol 91:1046–1050CrossRefPubMedGoogle Scholar
  6. Dumoulin C, Cochelin B (2000) Mechanical behaviour modelling of balloon-expandable stents. J Biomech 33:1461–1470CrossRefPubMedGoogle Scholar
  7. Edelman ER, Rogers C (1998) Pathobiologic response to stenting. Am J Cardiol 81(7A):4E-6ECrossRefPubMedGoogle Scholar
  8. Feldman CL, Stone PH (2000) Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Curr Opin Cardiol 15:430–440CrossRefPubMedGoogle Scholar
  9. Funakubo H (1987) Shape memory alloys. Taylor & Francis, LondonGoogle Scholar
  10. Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH (1993) Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 13:310–315PubMedGoogle Scholar
  11. Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A (1997) In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 28:993–998PubMedGoogle Scholar
  12. Gourisankaran V, Sharma MG (2000) The finite-element analysis of stresses in atherosclerotic arteries during balloon angioplasty. Crit Rev Biomed Eng 28:47–51PubMedGoogle Scholar
  13. Green AE, Zerna W (1968) Theoretical Elasticity. Clarendon Press, OxfordGoogle Scholar
  14. Gyongyosi M, Yang P, Khorsand A, Glogar D (2000) Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J Am Coll Cardiol 35:1580–1589CrossRefPubMedGoogle Scholar
  15. Han RO, Schwartz RS, Kobayashi Y, Wilson SH, Mann JT, Sketch MH, Safian RD, Lansky A, Popma J, Fitzgerald PJ, Palacios IF, Chazin-Caldie M, Goldberg S (2001) Comparison of self-expanding and balloon-expandable stents for the reduction of restenosis. Am J Cardiol 88:253–259CrossRefPubMedGoogle Scholar
  16. Holzapfel GA, Stadler M, Schulze-Bauer CAJ (2002) A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty using Magnetic Resonance Imaging and Mechanical Testing. Ann Biomed Eng 30:753–767CrossRefPubMedGoogle Scholar
  17. Jiang Y, Kohara K, Hiwada K (1999) Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients. Hypertens Res 22:203–207PubMedGoogle Scholar
  18. Jiang Y, Kohara K, Hiwada K (2000) Association between risk factors for atherosclerosis and mechanical forces in carotid artery. Stroke 31: 2319–2324PubMedGoogle Scholar
  19. Kobayashi Y, Honda Y, Christie GL, Teirstein PS, Bailey SR, Brown CL III, Matthews RV, De Franco AC, Schwartz RS, Goldberg S, Popma JJ, Yock PG, Fitzgerald PJ (2001) Long-term vessel response to a self-expanding coronary stent: a serial volumetric intravascular ultrasound analysis from the ASSURE trial. J Am Coll Cardiol 37:1329–1334CrossRefPubMedGoogle Scholar
  20. Lee R T, Loree HM, Cheng GC, Lieberman EH, Jaramillo N, Schoen FJ (1993) Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: Prediction of plaque fracture locations. J Am Coll Cardiol 21:777–782PubMedGoogle Scholar
  21. Leon M, Teirstein P, Moses J, Tripuraneni P, Lansky AJ, Jani S, Wong SC, Fish D, Ellis S, Holmes DR, Kerieakes D, Kuntz RE (2001) Localized intracoronary gamma radiation therapy to inhibit the recurrence of restenosis after stenting (GAMMA-1). N Engl J Med 344:250–256CrossRefPubMedGoogle Scholar
  22. Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R (2002) Mechanical behavior of coronary stents investigated through the finite element method. J Biomech 35:803–811CrossRefPubMedGoogle Scholar
  23. Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB (1997) Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation 95:1791–1798PubMedGoogle Scholar
  24. Moore JE, Berry JL (2002) Fluid and solid mechanical implications of vascular stenting. Ann Biomed Eng 30:498–508CrossRefPubMedGoogle Scholar
  25. Morice MC, Surruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico (2002) A Randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346:1773–1780CrossRefPubMedGoogle Scholar
  26. Oh S, Kleinberger M, McElhaney JH (1994) Finite-element analysis of balloon angioplasty. Med Biol Eng Comput 32: S108–S114PubMedGoogle Scholar
  27. Petrini L, Migliavacca F, Dubini G, Auricchio F (2004) Numerical investigation of the intravascular coronary stent flexibility. J Biomechanics 37:495–504CrossRefGoogle Scholar
  28. Popma JJ, Suntharalingam M, Lansky AJ, Heuser RR, Speiser B, Teirstein PS, Massullo V, Bass T, Henderson R, Silber S, von Rottkay P, Bonan R, Ho KK, Osattin A, Kuntz RE (2002) Randomized trial of 90Sr/90Y beta-radiation versus placebo control for treatment of in-stent restenosis (START). Circulation 106:1090–1096CrossRefPubMedGoogle Scholar
  29. Prendergast PJ, Lally C, Daly S, Reid AJ, Lee TC, Quinn D, Dolan F (2003) Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite element modelling. J Biomech Eng 125:692–699CrossRefPubMedGoogle Scholar
  30. Rogers C, Tseng DY, Squere JC, Edelman ER (1999). Balloon-artery interactions during stent placement. A finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ Res 84:378–383PubMedGoogle Scholar
  31. Salunke NV, Topoleski LDT, Humphrey JD, Mergner WJ (2001) Compressive stress-relaxation of human atherosclerotic plaque. J Biomed Mater Res 55:236–241CrossRefPubMedGoogle Scholar
  32. Sangiorgi G, Taylor AJ, Farb A, Carter AJ, Edwards WD, Holmes DR, Schwartz RS, Virmani R (1999) Histopathology of postpercutaneous trans-luminal coronary angioplasty remodeling in human coronary arteries. Am Heart J 138:681–687PubMedGoogle Scholar
  33. Saul GD (1999) Arterial stress from intraluminal pressure modified by tissue pressure offers a complete explanation for the distribution of atherosclerosis. Med Hypotheses 52:349–351CrossRefPubMedGoogle Scholar
  34. Schwartz RS, Topol EJ, Serruys PW, Sangiorgi G, Holmes DR Jr (1998) Artery size, neointima, and remodeling: time for some standards. J Am Coll Cardiol 32:2087–2094CrossRefPubMedGoogle Scholar
  35. Schwartz RS, Henry TD. (2002) Pathophysiology of coronary artery restenosis. Rev Cardiovasc Med 3 Suppl 5: S4-S9Google Scholar
  36. Shih CC, Shih CM, Chen YL, Su YY, Shih JS, Kwok CF, Lin SJ (2001) Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire. J Biomed Mater Res 57:200–207CrossRefPubMedGoogle Scholar
  37. Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AG, Falotico R, Jaeger J, Popma JJ, Serruys PW (2001) Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 104:2007–2011PubMedGoogle Scholar
  38. Stergiopulos N, Vulliemoz S, Rachev A, Meister J-J, Greenwald SE (2001) Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J Vasc Res 38:237–246CrossRefPubMedGoogle Scholar
  39. Taylor AJ, Gorman PD, Kenwood B, Hudak C, Tashko G, Virmani R (2001) A comparison of four stent designs on arterial injury, cellular proliferation, neointima formation, and arterial dimensions in an experimental porcine model. Cathet Cardiovasc Intervent 53:420–425CrossRefGoogle Scholar
  40. Thierry B, Merhi Y, Bilodeau L, Trepanier C, Tabrizian M (2002) Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials 23:2997–3005CrossRefPubMedGoogle Scholar
  41. Thubrikar MJ, Robicsek F (1995) Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 59:1594–1603CrossRefPubMedGoogle Scholar
  42. Trepanier C, Leung TK, Tabrizian M, Yahia LH, Bienvenu JG, Tanguay JF, Piron DL, Bilodeau L (1999) Preliminary investigation of the effects of surface treatments on biological response to shape memory NiTi stents. J Biomed Mater Res 48:165–171CrossRefPubMedGoogle Scholar
  43. Virmani R (2002) Self-expanding stent deployment strategies may be the key to reducing in-stent restenosis. Catheter Cardiovasc Interv 56:487–488CrossRefPubMedGoogle Scholar
  44. Waksman R, Raizner AE, Yeung AC, Lansky AJ, Vandertie L (2002) Use of localised intracoronary beta radiation in treatment of in-stent restenosis: The INHIBIT randomised controlled trial. Lancet 359:543–544CrossRefPubMedGoogle Scholar
  45. Welt FG, Rogers C (2002) Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol 22:1769–1776CrossRefPubMedGoogle Scholar
  46. Wentzel JJ, Gijsen FJ, Stergiopulos N, Serruys PW, Slager CJ, Krams R (2003) Shear stress, vascular remodeling and neointimal formation. J Biomech 36:681–688CrossRefPubMedGoogle Scholar
  47. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Francesco Migliavacca
    • 1
    • 3
    Email author
  • Lorenza Petrini
    • 4
  • Paolo Massarotti
    • 3
    • 4
  • Silvia Schievano
    • 3
    • 4
  • Ferdinando Auricchio
    • 4
  • Gabriele Dubini
    • 2
    • 3
  1. 1.Dipartimento di BioingegneriaPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di Ingegneria StrutturalePolitecnico di MilanoMilanItaly
  3. 3.Laboratory of Biological Structure Mechanics (LaBS)Politecnico di MilanoMilanItaly
  4. 4.Dipartimento di Meccanica StrutturaleUniversità degli Studi di PaviaItaly

Personalised recommendations