Advertisement

Ocean Dynamics

, Volume 69, Issue 6, pp 679–699 | Cite as

Directional wave spectra at the regional scale with the KuROS airborne radar: comparisons with models

  • Eva Le MerleEmail author
  • Danièle Hauser
  • Céline Tison
Article

Abstract

In situ observations, satellite observations, and regional observations from airborne remote sensing are very useful to characterize sea state evolution and related physical processes, improve numerical modeling, and contribute to climate variable survey. Directional wave spectra describe the complexity of sea state and give access to parameters such as directional parameters (mean direction and directional distribution of energy) and frequency parameters (peak frequency, frequency spread). In this paper, directional ocean wave spectra and their parameters, retrieved from observations carried out with the airborne radar system KuROS during two field campaigns, are analyzed. These campaigns provide a very rich variety of meteorological conditions: high wind conditions either fetch-limited cases or mature sea conditions and moderate wind conditions and sea state dominated by swell. The objective of this paper is to compare the KuROS data set with numerical wave model outputs and buoy observations. This comparison aims first at assessing the performances on main wave parameters (significant wave height, mean direction at the peak, peak frequency) retrieved from KuROS in different conditions (wind sea, swell, mixed seas), and then, to discuss on parameters characterizing the shape of the wave spectra, namely the frequency and the directional spread. Results of the comparisons show that, due to the size of the KuROS radar footprint, ocean waves with dominant wavelengths lower than 200 m are the most appropriate situations for wave retrieval. They also show an overestimation of the model frequency spread and an underestimation of the model directional spread compare to KuROS and buoy data for both campaigns.

Keywords

Ocean wave spectrum Numerical wave model Radar observations 

Notes

Acknowledgements

The authors thank the staff of the radar team at LATMOS for its involvement in the development and operation of KuROS. They also wish to thank the staff of the SAFIRE team who operated the ATR42 aircraft. The development and operation of the KuROS radar was funded by the French space agency Centre National d’Etudes Spatiales (CNES). The Lion buoy data were provided by Météo-France in the context of the HyMeX project. The Pierres Noires buoy data were provided by the CEREMA (Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement).

We also thank Lotfi Aouf from Météo-France for providing us with the different runs of the MFWAM wave forecast, and Fabrice Ardhuin and Mickaël Accensi from the LOPS for providing us with the data of the WW3 run.

References

  1. Alpers WR, Ross DB, Rufenach CL (1981) On the detectability of ocean surface waves by real and synthetic aperture radar. J Geophys Res 86(C7):6481–6498.  https://doi.org/10.1029/JC086iC07p06481
  2. Ardhuin F, Rogers E, Babanin AV et al (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40:1917–1941.  https://doi.org/10.1175/2010JPO4324.1 CrossRefGoogle Scholar
  3. Badulin S, Pushkarev A, Resio D, Zakharov V (2005) Self-similarity of wind-driven seas. Nonlinear Process Geophys 12.  https://doi.org/10.5194/npg-12-891-2005
  4. Blackman RB, Tukey JW (1959) The measurement of power spectra. Dover Publications, Inc, MineolaGoogle Scholar
  5. Breivik L-A, Reistad M, Schyberg H et al (1998) Assimilation of ERS SAR wave spectra in an operational wave model. J Geophys Res Ocean 103:7887–7900.  https://doi.org/10.1029/97JC02728 CrossRefGoogle Scholar
  6. Caudal G, Hauser D, Valentin R, Le Gac C (2014) KuROS: a new airborne Ku-band Doppler radar for observation of surfaces. J Atmos Ocean Technol 31:2223–2245.  https://doi.org/10.1175/JTECH-D-14-00013.1 CrossRefGoogle Scholar
  7. Cavaleri L, Fox-Kemper B, Hemer M (2012) Wind waves in the coupled climate system. 93:1651–1661. doi:  https://doi.org/10.1175/bams-d-11-00170.1
  8. Courtier P. FCGJ-FRF, Rochas M (1991) The ARPEGE project at Météo-France, ECMWF Annual Seminar, Eur. Cent. for Medium-Range Weather Forecasts, ReadingGoogle Scholar
  9. Donelan MA, Hamilton J, WHH, Stewart RW (1985) Directional spectra of wind-generated ocean waves. Philos Trans R Soc London Ser A, Math Phys Sci 315.  https://doi.org/10.1098/rsta.1985.0054
  10. Drobinski P, Ducrocq V, Alpert P et al (2014) HyMeX: a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082.  https://doi.org/10.1175/BAMS-D-12-00242.1 CrossRefGoogle Scholar
  11. Engen G, Johnsen H (1995) SAR-ocean wave inversion using image cross spectra. IEEE Trans Geosci Remote Sens 33:1047–1056.  https://doi.org/10.1109/36.406690 CrossRefGoogle Scholar
  12. Freilich MH, Vanhoff BA (2003) The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J Atmos Ocean Technol 20:549–562.  https://doi.org/10.1175/1520-0426(2003)20<549:TRBWSR>2.0.CO;2 CrossRefGoogle Scholar
  13. Goda Y (1997) Directional wave spectrum and its engineering applications. Adv Coast Ocean Eng 3:67–102.  https://doi.org/10.1142/9789812797568_0003
  14. Group TW (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810.  https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2 CrossRefGoogle Scholar
  15. Hashimoto N (1997) Analysis of the directional wave spectrum from field data. Adv Coast Ocean Eng 3:103–143.  https://doi.org/10.1142/9789812797568_0004
  16. Hasselmann S, Hasselmann K (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral. J Phys Oceanogr 15:1369–1377.  https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2 CrossRefGoogle Scholar
  17. Hasselmann K, Hasselmann S (1991) On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J Geophys Res Ocean 96:10713–10729.  https://doi.org/10.1029/91JC00302 CrossRefGoogle Scholar
  18. Hasselmann K, Barnett TP, Bouws E et al (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deut Hydrogr Z 8:1–95Google Scholar
  19. Hauser D, Caudal G (1996) Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation. J Geophys Res Ocean 101:25833–25846.  https://doi.org/10.1029/96JC02124
  20. Hauser D, Caudal G, Rijckenberg G-J et al (1992) RESSAC: a new airborne FM/CW radar ocean wave spectrometer. IEEE Trans Geosci Remote Sens 30:981–995 doi: 0196-2892/92$03.00 CrossRefGoogle Scholar
  21. Hauser D, Kahma KK, Krogstad HE, Lehner S, Mombaliu JAJ, Wyatt LR (2005) Measuring and analysing the directional spectra of ocean waves. Editors: Hauser D, Kahma KK, Krogstad HE, Lehner S, Mombaliu JAJ, Wyatt LR from European COST Action 714 Group, EUR 21367Google Scholar
  22. Hauser D, Tison C, Amiot T et al (2017) SWIM: the first spaceborne wave scatterometer. IEEE Trans Geosci Remote Sens 55:3000–3014.  https://doi.org/10.1109/TGRS.2017.2658672 CrossRefGoogle Scholar
  23. Jackson FC, Walton WT, Baker PL (1985a) Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars. J Geophys Res 90:987–1004 doi: 0148–0227/85/004C-1190$05.00CrossRefGoogle Scholar
  24. Jackson FC, Walton WT, Peng CY (1985b) A comparison of in situ and airborne radar observations of ocean wave directionality. J Geophys Res 90:1005–1018 doi: 0148-0027/85/004C-1273$05.00CrossRefGoogle Scholar
  25. Law Chune S, Aouf L (2018) Wave effects in global ocean modeling: parametrizations vs. forcing from a wave model. Ocean Dyn 68:1739–1758.  https://doi.org/10.1007/s10236-018-1220-2 CrossRefGoogle Scholar
  26. Lazure P, Dumas F (2008) An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31:233–250.  https://doi.org/10.1016/j.advwatres.2007.06.010 CrossRefGoogle Scholar
  27. Lefèvre JM, Aouf L, Bataille C, Queffeulou PAF (2009) Apport d’un nouveau modèle de vagues de 3ème génération à Météo-France. In: Actes de Conférence Des Ateliers de Modélisation de l’AtmosphèreGoogle Scholar
  28. List JH (1990) Wave groupiness variations in the nearshore. Coast Eng 15:475–496.  https://doi.org/10.1016/0378-3839(91)90024-B CrossRefGoogle Scholar
  29. Longuet-Higgins MS, DEC, Smith ND (1963) The directional spectrum of ocean waves, and processes of wave generation. Proc R Soc Lond A Math Phys Sci 265:286–315Google Scholar
  30. Nouguier F, Chapron B, Collard F et al (2018) Sea surface kinematics from near-nadir radar measurements. IEEE Trans Geosci Remote Sens 56:10.  https://doi.org/10.1109/TGRS.2018.2833200
  31. Pettersson H, Graber HC, Hauser D et al (2003) Directional wave measurements from three wave sensors during the FETCH experiment. J Geophys Res 108:FET 9-1-- FET 9-15 doi: 0148-0027/03/2001JC001164$09.00CrossRefGoogle Scholar
  32. Phillips OM (1977) The dynamics of the upper ocean. Cambridge University Press, CambridgeGoogle Scholar
  33. Plant WJ, Keller WC, Hayes K (2005) Simultaneous measurement of ocean winds and waves with an airborne coherent real aperture radar. J Atmos Ocean Technol 22:832–846.  https://doi.org/10.1175/JTECH1724.1 CrossRefGoogle Scholar
  34. Resio DT, Vincent L, Ardag D (2016) Characteristics of directional wave spectra and implications for detailed-balance wave modeling. Ocean Model 103:38–52.  https://doi.org/10.1016/j.ocemod.2015.09.009 CrossRefGoogle Scholar
  35. Saulnier J-B, CLEMENT AH, FALCAO AFO et al (2011) Wave groupiness and spectral bandwidth as relevant parameters for the performance assessment of wave energy converters. Ocean Eng 38:130–147.  https://doi.org/10.1016/j.oceaneng.2010.10.002 CrossRefGoogle Scholar
  36. Schule JJ Jr, Simpson LS, Deleonibus PS (1971) A study of fetch-limited wave spectra with an airborne laser. J Geophys Res 76:4160–4171.  https://doi.org/10.1029/JC076i018p04160 CrossRefGoogle Scholar
  37. Seity Y, Brousseau P, Malardel S et al (2011) The AROME-France convective-scale operational model. Mon Weather Rev 139:976–991CrossRefGoogle Scholar
  38. Tolman H, Accensi M, Alves J-H, et al (2014) User manual and system documentation of WAVEWATCH III version 4.18, NOAA/NWS/NCEP/MMAB, Technical Note number 316Google Scholar
  39. Voorrips AC, Makin V, Hasselmann K (1997) Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J Geophys Res 102:5829–5849.  https://doi.org/10.1029/96JC03242 CrossRefGoogle Scholar
  40. Walsh EJ, Hancock DW, Hines DE et al (1985) Directional wave spectra measured with the surface contour radar. J Phys Oceanogr 15:566–592.  https://doi.org/10.1175/1520-0485(1985)015<0566:DWSMWT>2.0.CO;2 CrossRefGoogle Scholar
  41. Wyatt LR (1991) High-frequency radar measurements of the ocean wave-directional spectrum. IEEE J Ocean Eng 16:163–169.  https://doi.org/10.1109/48.64896 CrossRefGoogle Scholar
  42. Wyatt LR (2019) Measuring the ocean wave directional spectrum “First Five” with HF radar. Ocean Dyn 69:123–144.  https://doi.org/10.1007/s10236-018-1235-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université of Versailles Saint Quentin, Sorbonne Université, CNRS, LATMOSGuyancourtFrance
  2. 2.CNESToulouseFrance

Personalised recommendations