Advertisement

Ocean Dynamics

, Volume 69, Issue 4, pp 489–507 | Cite as

Modelling dynamics of the estuarine turbidity maximum and local net deposition

  • Roland F. HesseEmail author
  • Anna Zorndt
  • Peter Fröhle
Article
Part of the following topical collections:
  1. Topical Collection on the 14th International Conference on Cohesive Sediment Transport in Montevideo, Uruguay 13-17 November 2017

Abstract

Net deposition in estuaries is often linked to the estuarine turbidity maximum zones, in which fine, cohesive sediments accumulate due to residual transport by the estuarine circulation and tidal asymmetries. Sediments deposit in fairways or harbours, which creates high maintenance dredging costs and the need for better prediction of dredging hotspots with process-based numerical models. In this paper, a new efficient modelling approach is presented which enables the simulation of the ETM formation, its seasonal dynamics and the local sedimentation. A 3D baroclinic large-scale estuary model with a characteristic sediment fraction with simplified sediment transport properties is used with realistic boundary conditions, but without initial sediment distribution. This approach is referred to as supply-limited, regarding the ETM formation by residual transport. A dynamic equilibrium between residual sediment import from the open boundaries, accumulation and local sedimentation establishes in the model. This is achieved by combining the large-scale supply-limited model with an extended bed exchange formulation (2-Layer-Concept). A model of the Weser estuary is used as case study to reproduce and analyse the ETM formation and the resulting sedimentation simulated with this approach. The results are compared with the equivalent sediment concentration of turbidity measurements and dredging volumes.

Keywords

Fine cohesive sediments Suspended sediment transport Bed exchange Supply-limited model approach 2-Layer-Concept Sedimentation Estuarine turbidity maximum (ETM) Seasonal sediment dynamics Estuary Weser 

Notes

Funding

This work was funded by the research and development programme of the Federal Waterways Engineering and Research Institute (Bundesanstalt für Wasserbau, BAW).

References

  1. Allen GP, Salomon JC, Bassoullet P, Du Penhoat Y, de Grandpre C (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26(1980):S. 69–S. 90 graph. DarstCrossRefGoogle Scholar
  2. BAW (2012). Validierung des Jade-Weser-Basismodells 2012 für das Verfahren UnTRIM2007-SediMorph: Teilbericht 1: Hydrodynamik und Salztransport (BAW-Bericht B3955.02.10.10048.1-4, in preparation), Bundesanstalt für WasserbauGoogle Scholar
  3. Becker, M. (2011). Suspended sediment transport and fluid mud dynamics in tidal estuaries, Dissertation, Bremen, University BremenGoogle Scholar
  4. Berlamont J, Ockenden M, Toorman E, Winterwerp J (1993) The characterisation of cohesive sediment properties. Coast Eng 21(1–3):105–128CrossRefGoogle Scholar
  5. BfG (2014a). Produktblatt: ALS-Befliegungen Unter-/Außenweser 2012-2015: Produkt: Digitales Oberflächenmodell (DOM) 2012Google Scholar
  6. BfG (2014b). Sedimentmanagementkonzept Tideweser: Untersuchung im Auftrag der WSA Bremen und Bremerhaven, Bericht 1794, KoblenzGoogle Scholar
  7. Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. J Hydraul Eng 128(1):2–8CrossRefGoogle Scholar
  8. Brenon I, Le Hir P (1999) Modelling the turbidity maximum in the seine estuary (France). Identification of formation processes. Estuar Coast Shelf Sci 49(4):525–544CrossRefGoogle Scholar
  9. Burchard H, Hetland RD (2010) Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. J Phys Oceanogr 40(6):1243–1262CrossRefGoogle Scholar
  10. Burchard H, Schuttelaars HM, Ralston DK (2018) Sediment trapping in estuaries. Annu Rev Mar Sci 10(1):371–395CrossRefGoogle Scholar
  11. van der Wegen M, Jaffe BE, Roelvink JA (2011) Process-based, morphodynamic hindcast of decadal deposition patterns in San Pablo Bay, California. J Geophys Res 116(F2):1856–1887.  https://doi.org/10.1029/2009JF001614
  12. Downing J (2006) Twenty-five years with OBS sensors. The good, the bad, and the ugly. Cont Shelf Res 26(17):2299–2318CrossRefGoogle Scholar
  13. DWD (2013). Wind measurement at station Alte Weser, Deutscher WetterdienstGoogle Scholar
  14. Dyer KR (1973) Estuaries: a physical introduction. A Wiley-Interscience Publication, Wiley, LondonGoogle Scholar
  15. Dyer KR (1988), Fine sediment particle transport in estuaries, in Dronkers J and van Leussen W (Eds.), Physical processes in estuaries: [papers presented at an International Symposium on Physical Processes in Estuaries, held Sept. 9–12, 1986, in the Netherlands], Springer, Berlin, pp. 295–310Google Scholar
  16. Fanger HU (1986). MASEX ‘83, eine Untersuchung über die Trübungszone der Unterweser, GKSS, 86/E/6, GKSS-Forschungszentrum, GeesthachtGoogle Scholar
  17. Geyer WR, MacCready P (2014) The estuarine circulation. Annu Rev Fluid Mech 46(1):175–197CrossRefGoogle Scholar
  18. Grabemann I. (1991). Die Trübungszone im Weser-Ästuar: Messungen und Interpretation, Dissertation, Hamburg, Universität HamburgGoogle Scholar
  19. Grabemann I, Krause G (1989) Transport processes of suspended matter derived from time series in a tidal estuary. J Geophys Res 94:14373CrossRefGoogle Scholar
  20. Grabemann I, Krause G (2001) On different time scales of suspended matter dynamics in the Weser estuary. Estuaries 24(5):688–698CrossRefGoogle Scholar
  21. Grabemann I, Kappenberg J, Krause G (1995) Aperiodic variations of the turbidity maxima of two German coastal plain estuaries. Neth J Aquat Ecol 29(3–4):217–227CrossRefGoogle Scholar
  22. Grabemann I, Uncles RJ, Krause G, Stephens JA (1997) Behaviour of turbidity maxima in the Tamar (U.K.) and Weser (F.R.G.) estuaries. Estuar Coast Shelf Sci 45(2):235–246CrossRefGoogle Scholar
  23. Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci Rev 105(3–4):101–120CrossRefGoogle Scholar
  24. Grasso F, Verney R, Le Hir P, Thouvenin B, Schulz E, Kervella Y, Khojasteh Pour Fard I, Lemoine J-P, Dumas F, Garnier V (2018) Suspended sediment dynamics in the macrotidal seine estuary (France). 1. Numerical modeling of turbidity maximum dynamics. J Geophys Res Oceans 123(1):558–577CrossRefGoogle Scholar
  25. Hesse RF (2018). Zum Transportverhalten kohäsiver Sedimente in Ästuaren, Dissertation, in progress, Technische Universität HamburgGoogle Scholar
  26. Heyer H and Schrottke K (2013). Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht AufMod: Gemeinsamer Abschlussbericht für das Gesamtprojekt mit Beiträgen aus allen 7 TeilprojektenGoogle Scholar
  27. Holliday CP, Rasmussen TC and Miller WP (2003), Establishing the relationship between turbidity and total suspended sediment concentration, Proceedings of the 2003 Georgia Water Resources ConferenceGoogle Scholar
  28. Jay DA, Musiak JD (1994) Particle trapping in estuarine tidal flows. J Geophys Res 99:445–461CrossRefGoogle Scholar
  29. Kappenberg J, Grabemann I (2001) Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries. Estuaries 24(5):699CrossRefGoogle Scholar
  30. van Kessel T, de Boer G and Boderie P (2009). Calibration suspended sediment model MarkermeerGoogle Scholar
  31. van Kessel T, Winterwerp H, van Prooijen B, van Ledden M, Borst W (2011) Modelling the seasonal dynamics of SPM with a simple algorithm for the buffering of fines in a sandy seabed. Cont Shelf Res 31(10):124–134CrossRefGoogle Scholar
  32. Kösters F, Grabemann I and Schubert R (2014), On SPM dynamics in the turbidity maximum zone of the Weser estuary, in Kuratorium für Forschung im Küsteningenieurwesen (Ed.), Die Küste: Archiv für Forschung und Technik an der Nord- und Ostsee ; Archive for Research and Technology on the North Sea and Baltic Coast, Modelling, 81 (2014), pp. 393–408Google Scholar
  33. Lang G (1990). Zur Schwebstoffdynamik von Trübungszonen in Ästuarien, Dissertation, Hannover, Universität HannoverGoogle Scholar
  34. Lange D, Müller H, Piechotta F and Schubert R (2008), The Weser Estuary, in Kuratorium für Forschung im Küsteningenieurwesen (Ed.), Die Küste: Archiv für Forschung und Technik an der Nord- und Ostsee ; Archive for Research and Technology on the North Sea and Baltic Coast, ICCE, Vol. 74, pp. 275–287Google Scholar
  35. Le Hir P, Cayocca F, Waeles B (2011) Dynamics of sand and mud mixtures. A multiprocess-based modelling strategy. Cont Shelf Res 31(10):S135–S149CrossRefGoogle Scholar
  36. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8):883–915CrossRefGoogle Scholar
  37. van Leussen W (1994) Estuarine macroflocs and their role in fine-grained sediment transport, Dissertation, Universiteit Utrecht, Faculteit Aardwetenschappen, Ministry of Transport, Public Works and Water Management, Directorate-General of Public Works and Water Management, Den Haag. ISBN 90-393-0410-6Google Scholar
  38. van Leussen W (2011) Macroflocs, fine-grained sediment transports, and their longitudinal variations in the Ems estuary. Ocean Dyn 61(2–3):387–401CrossRefGoogle Scholar
  39. Malcherek A (1995). Mathematische Modellierung von Strömungen und Stofftransportprozessen in Ästuaren, Dissertation, Hannover, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen der Universität HannoverGoogle Scholar
  40. van Maren DS, Winterwerp JC, Decrop B, Wang ZB, Vanlede J (2011) Predicting the effect of a current deflecting wall on harbour siltation. Cont Shelf Res 31(10, Supplement):S182–S198CrossRefGoogle Scholar
  41. van Maren DS, van Kessel T, Cronin K, Sittoni L (2015) The impact of channel deepening and dredging on estuarine sediment concentration. Cont Shelf Res 95:1–14CrossRefGoogle Scholar
  42. Maushake C and Grünler S (2015), personal communicationGoogle Scholar
  43. Mueller A, Puls W (1996) Modelling of suspended matter transport in tidal rivers. Adv Limnol 47(1996):S.343–S.351 96/E/17Google Scholar
  44. Papenmeier S, Schrottke K, Bartholomä A, Flemming BW (2013) Sedimentological and rheological properties of the water–solid bed interface in the Weser and Ems estuaries, North Sea, Germany. Implications for fluid mud classification. J Coast Res 289:797–808CrossRefGoogle Scholar
  45. Pejrup M, Mikkelsen OA (2010) Factors controlling the field settling velocity of cohesive sediment in estuaries. Estuar Coast Shelf Sci 87(2):177–185CrossRefGoogle Scholar
  46. Rietmöller R, Fanger H-U, Grabemann I, Krasemann, HL, Ohm K, Böning J, Neumann LJR, Lang G, Markofsky M and Schubert R (1988), Hydrographic measurements in the turbidity zone of the Weser estuary, in Dronkers J and van Leussen W (Eds.), Physical processes in estuaries: [papers presented at an International Symposium on Physical Processes in Estuaries, held Sept. 9–12, 1986, in the Netherlands], Springer, BerlinGoogle Scholar
  47. Sanford LP (2008) Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring. Comput Geosci 34(10):1263–1283CrossRefGoogle Scholar
  48. Schrottke K, Becker M, Bartholomä A, Flemming BW, Hebbeln D (2006) Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler. Geo-Mar Lett 26(3):185–198CrossRefGoogle Scholar
  49. Schulz E, Grasso F, Le Hir P, Verney R, Thouvenin B (2018) Suspended sediment dynamics in the macrotidal seine estuary (France). 2. Numerical modeling of sediment fluxes and budgets under typical hydrological and meteorological conditions. J Geophys Res Oceans 123(1):578–600CrossRefGoogle Scholar
  50. Simpson JH, Brown J, Matthews J, Allen G (1990) Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13(2):125–132CrossRefGoogle Scholar
  51. Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22(9):1339–1360CrossRefGoogle Scholar
  52. Winterwerp JC, van Kesteren WGM (eds) (2004) Introduction to the physics of cohesive sediment in the marine environment, Developments in sedimentology, Vol 56, 1 ed., Elsevier, Amsterdam. ISBN 0444515534Google Scholar
  53. (WSV: Wasser- und SchifffahrtsVerwaltung des Bundes) (2014) River runoff, salinity and suspended sediment concentration measurement at station Intschede (INS): provided by (WISKI: Wasserstraßeninformationssystem), Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)Google Scholar
  54. (WSV: Wasser- und SchifffahrtsVerwaltung des Bundes) (2015) Turbidity measurements stations Bremerhaven Alter Leuchtturm (BAL), Nordenham Unterfeuer (NUF), Rechtenfleth (RFL), Brake (BRA), Elsfleth (EFL): provided by (WISKI: Wasserstraßeninformationssystem), Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of River and Coastal EngineeringHamburg University of Technology (TUHH)HamburgGermany
  2. 2.Federal Waterways Engineering and Research Institute (BAW)HamburgGermany

Personalised recommendations