Advertisement

Ocean Dynamics

, Volume 69, Issue 2, pp 145–156 | Cite as

Extension of sea surface temperature unpredictability

  • Marat AkhmetEmail author
  • Mehmet Onur Fen
  • Ejaily Milad Alejaily
Article

Abstract

The sea surface temperature (SST) variability is clearly affected by global climate patterns, which involve large-scale ocean-atmosphere fluctuations similar to the El Niño-Southern Oscillation (ENSO). We give mathematical arguments for the SST to be unpredictable over oceans. Sensitivity (unpredictability) is the core ingredient of chaos. Several researches suggested that the ENSO might be chaotic. It was Vallis (Science 232:243–245, 1986) who revealed unpredictability in ENSO by reducing his model to the Lorenz equations. We discuss the unpredictability for SST as an extendable phenomenon through coupled Vallis ENSO models and advection equations by using theoretical as well as numerical analyses. To perform theoretical research, we apply our recent results on replication of chaos and unpredictable solutions of differential equations, while for numerical analysis, we combine results on unpredictable solutions with numerical analysis of chaos in the advection equation.

Keywords

Sea surface temperature Unpredictability extension El Niño-Southern Oscillation Vallis model Advection equation 

Notes

Acknowledgments

The authors wish to express their sincere gratitude to the referees for the helpful criticism and valuable suggestions, which helped significantly improve the paper.

Funding information

The third author is financially supported by a scholarship from the Ministry of Education, Libya.

References

  1. Akhmet M, Fen MO (2015) Extension of Lorenz unpredictability. Int J Bifurcat Chaos 25(10):1550126CrossRefGoogle Scholar
  2. Akhmet M, Fen MO (2016a) Unpredictable points and chaos. Commun Nonlinear Sci Numer Simulat 40:1–5CrossRefGoogle Scholar
  3. Akhmet M, Fen MO (2016b) Replication of chaos in neural networks, economics and physics. Springer, BerlinCrossRefGoogle Scholar
  4. Akhmet M, Fen MO (2017a) Poincaré chaos and unpredictable functions. Commun Nonlinear Sci Numer Simulat 48:85–94CrossRefGoogle Scholar
  5. Akhmet M, Fen MO (2017b) Existence of unpredictable solutions and chaos. Turk J Math 41:254–266CrossRefGoogle Scholar
  6. Akhmet M, Fen MO (2018) Non-autonomous equations with unpredictable solutions. Commun Nonlinear Sci Numer Simul 59:657–670CrossRefGoogle Scholar
  7. Alkahtani BST, Atangana A (2016) Chaos on the Vallis model for El Niño with fractional operators. Entropy 18:100CrossRefGoogle Scholar
  8. Barale V, Gade M (2008) Remote sensing of the European seas. Springer science business media B.V, BerlinCrossRefGoogle Scholar
  9. Battisti DS (1988) Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J Atmos Sci 45:2889–2919CrossRefGoogle Scholar
  10. Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Climate 19:1688–1705CrossRefGoogle Scholar
  11. Bonjean F (2001) Influence of sea currents on the sea surface temperature in the tropical Pacific ocean. J Phys Oceanogr 31:943–961CrossRefGoogle Scholar
  12. Borghezan M, Rech PC (2017) Chaos and periodicity in Vallis model for El Niño. Chaos Soliton Fract 97:15–18CrossRefGoogle Scholar
  13. Chambers DP, Tapley BD, Stewart RH (1999) Anomalous warming in the Indian Ocean coincident with El Niño. J Geophys Res 104:3035–3047CrossRefGoogle Scholar
  14. Coley D (2008) Energy and climate change: creating a sustainable future. Wiley, ChichesterGoogle Scholar
  15. Devaney RL (1989) An introduction to chaotic dynamical systems. Addison-Wesley, Menlo ParkGoogle Scholar
  16. Eamus D, Huete A, Yu Q (2016) Vegetation dynamics: a synthesis of plant ecophysiology, remote sensing and modelling. Cambridge University Press, New YorkGoogle Scholar
  17. Feigenbaum MJ (1980) Universal behavior in nonlinear systems. Los Alamos Sci/Summer 1:4–27Google Scholar
  18. Garay BM, Indig B (2015) Chaos in Vallis’ asymmetric Lorenz model for El Niño. Chaos Soliton Fract 75:253–262CrossRefGoogle Scholar
  19. Gent PR, Cane MA (1989) A reduced gravity, primitive equation model of the upper equatorial ocean. J Comput Phys 81:444– 480CrossRefGoogle Scholar
  20. Hammel SM, Yorke JA, Grebogi C (1987) Do numerical orbits of chaotic dynamical processes represent true orbits. J Complex 3:136–145CrossRefGoogle Scholar
  21. Jochum M, Murtugudde R (2006) Temperature advection by tropical instability waves. J Phys Oceanogr 36:592–605CrossRefGoogle Scholar
  22. Kessler WS, Rothstein LM, Chen D (1998) The annual cycle of SST in the eastern tropical Pacific as diagnosed in an OGCM. J Climate 11:777–799CrossRefGoogle Scholar
  23. Li TY, Yorke JA (1975) Period three implies chaos. Amer Math Monthly 82:985–992CrossRefGoogle Scholar
  24. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  25. Lucas LE, Waliser DE, Murtugudde R (2010) Mechanisms governing sea surface temperature anomalies in the eastern tropical Pacific Ocean associated with the boreal winter Madden-Julian Oscillation. JGR-Oceans 115:C05012Google Scholar
  26. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific ocean. J Geophys Res 96:3343–3357CrossRefGoogle Scholar
  27. Luo JJ, Zhang RC, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean Dipole. J Climate 23:726–742CrossRefGoogle Scholar
  28. Münnich M, Cane MA, Zebiak SE (1991) A study of self-excited oscillations in a tropical ocean–atmosphere system, Part II: nonlinear cases. J Atmos Sci 48:1238–1248CrossRefGoogle Scholar
  29. Neelin JD, Latif M (1998) El Niño dynamics. Phys Today 51(12): 32–36CrossRefGoogle Scholar
  30. Penland C, Matrasova L (1994) A balance condition for stochastic numerical models with application to the El Niño-Southern Oscillationl. J Climate 7:1352–1372CrossRefGoogle Scholar
  31. Roxy M, Guladi S, Drobhlar HKL, Navarra A (2011) Seasonality in the relationship between El Niño and Indian Ocean Dipole. Clim Dyn 37:221–236CrossRefGoogle Scholar
  32. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian ocean. Nature 401:360–362Google Scholar
  33. Sander E, Yorke JA (2011) Period-doubling Cascades Galore. Ergod Theory Dyn Syst 31:1249–1267CrossRefGoogle Scholar
  34. Schöll E, Schuster HG (eds) (2008) Handbook of chaos control. Wiley-VCH, WeinheimGoogle Scholar
  35. Sell GR (1971) Topological dynamics and ordinary differential equations. Nostrand-Reinhold, LondonGoogle Scholar
  36. Stevenson JW, Niiler PP (1983) Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J Phys Oceanogr 13:1894–1907CrossRefGoogle Scholar
  37. Stuecker MF, Jin FF, Timmermann A (2015) El Niño-Southern oscillation frequency cascade. Proc Natl Acad Sci USA 112:13490–13495CrossRefGoogle Scholar
  38. Tziperman E, Stone L, Cane MA, Jarosh H (1994) El Niño chaos: overlapping of resonance between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science 264:72–74CrossRefGoogle Scholar
  39. Vallis GK (1986) El Niño: a chaotic dynamical system?. Science 232:243–245CrossRefGoogle Scholar
  40. Vallis GK (1988) Conceptual models of El Niño and the Southern Oscillation. J Geophys 93:13979–13991CrossRefGoogle Scholar
  41. Willebrand J, Anderson DLT (eds) (1993) Modelling oceanic climate interactions. Springer, BerlinGoogle Scholar
  42. Yamagata T, Behera SK, Luo JJ, Masson S, Jury MR, Rao SA (2004) Coupled ocean-atmosphere variability in the tropical Indian ocean, Earth’s climate: The ocean-atmosphere interaction. Geophys Monogr 147:189–212Google Scholar
  43. Zebiak SE, Cane MA (1987) A model El Niño-Southern oscillation. Mon Wea Rev 115:2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marat Akhmet
    • 1
    Email author
  • Mehmet Onur Fen
    • 2
  • Ejaily Milad Alejaily
    • 1
  1. 1.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of MathematicsTED UniversityAnkaraTurkey

Personalised recommendations