Ocean Dynamics

, Volume 68, Issue 12, pp 1649–1661 | Cite as

Rapid intensification of Super Typhoon Haiyan: the important role of a warm-core ocean eddy

  • Guansuo WangEmail author
  • Biao Zhao
  • Fangli Qiao
  • Chang Zhao


Super Typhoon Haiyan devastated portions of Southeast Asia, particularly the Philippines, on November 8, 2013. In this paper, observational data are used to analyze the intensification process of Super Typhoon Haiyan. Observational data showed that Typhoon Haiyan intensified and the maximum sustained winds increased to 59 ms−1 after it encountered a double warm-core ocean eddy, while the central pressure of the typhoon dropped from 970 hPa to 920 hPa. Numerical simulations and observational data show that the presence of the warm-core eddy combined with SST increases due to climate change led to the rapid intensification of Super Typhoon Haiyan. Comparing these two factors, the warm-core ocean eddy, which brings significantly more heat into the upper ocean, plays the leading role in the intensification, with climate warming making a lesser contribution. Moreover, due to the increased thickness of the mixed layer associated with the warm-core ocean eddy, Super Typhoon Haiyan did not significantly decrease the sea surface temperature to the east of the Philippines, as is typical of typhoons, and the largest decrease was approximately 1 °C.


Tropical cyclone intensity Rapid intensification Sea surface temperature Warm-core eddy Upper-ocean heat content anomaly 


  1. Banzon VF, Reynolds RW, Stokes D, Xue Y (2014) A 1/4° spatial resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis. J Clim 27:8221–8228CrossRefGoogle Scholar
  2. Banzon V, Smith TM, Chin TM, Liu C, Hankins W (2016) A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst Sci Data 8:165–176CrossRefGoogle Scholar
  3. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model, in three-dimensional coastal ocean models, edited by N. S. Heaps. AGU, Washington, D C, pp 1–16Google Scholar
  4. Chen LS, Ding YH (1979) Introduction to the western pacific typhoons. Science Press, Beijing, pp 399–419Google Scholar
  5. Chen YJ, Xie Q, Meng WG et al (2009) An experiment study on the influence of different sea surface temperature on typhoon DuJuan over the South China Sea. J Trop Meteorol 25(4):401–406Google Scholar
  6. Fu LL, Christensen EJ, Yamarone CA et al (1994) TOPEX/POSEIDON mission overview. J Geophys Res 99:24369–22438CrossRefGoogle Scholar
  7. Hasselmann K (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch Hydrogr Z 8(12, Suppl. A):95Google Scholar
  8. Holliday CR, Thompson AH (1979) Climatological characteristics of rapidly intensifying typhoons. Mon Weather Rev 107:1022–1034CrossRefGoogle Scholar
  9. Huang NE, Zheng S, Steven RL et al (1998) The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proceedings the Royal of Society London A454, pp 903–995Google Scholar
  10. Lander M, Guard C, Camargo SJ (2014) Tropical cyclones, super-typhoon Haiyan, in State of the Climate in 2013. Bull Am Meterol Soc 95:S112–S114Google Scholar
  11. Leiper D, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2(3):218–224CrossRefGoogle Scholar
  12. Lin II, Wu CC, Emanuel KA, Lee IH, Wu CR, Pun IF (2005) The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev 133(9):2635–2649CrossRefGoogle Scholar
  13. Lin II, Chen CH, Pun IF et al (2009) Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008a). Geophys Res Lett 36:L03817Google Scholar
  14. Lin II, Wu CC, Pun IF, Ko DS (2008) Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Mon Weather Rev 136(9):3288–3306CrossRefGoogle Scholar
  15. Liu X, Jiang GR, Zhuo HF (2009) Numerical experiment for the impact of SST to typhoon Chanchu. Marin Forec 26(3):2–11Google Scholar
  16. Liu L, Yang G, Wang B, Zhang C, Li R, Zhang Z, Ji Y, Wang L (2014) C-Coupler1: a Chinese community coupler for earth system modeling. Geosci Model Dev 7(5):2281–2302. CrossRefGoogle Scholar
  17. Locarnini RA, Mishonov AV, Antonov JI et al (2013) World Ocean Atlas 2013, Volume 1: Temperature. In: S Levitus (ed), A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 ppGoogle Scholar
  18. Mark D, John K (1993) Upper-level Eddy angular momentum fluxes and tropical cyclone intensity change. J Atmos Sci 50(8):1133–1147CrossRefGoogle Scholar
  19. O’brien JJ, Reid RO (1967) The nonlinear response of a two-layer ocean to a stationary axially-symmetric hurricane. Part I: upwelling induced by momentum transfer. J Atmos Sci 24:205–215Google Scholar
  20. Pujol M-I, Faugère Y, Taburet G, Dupuy S, Pelloquin C, Ablain M, Picot N (2016) DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci 12:1067–1090CrossRefGoogle Scholar
  21. Qin ZH, Duan YH (2011) New progress in research on tropical cyclone intensity. China Meteorological Press, Beijing, pp 25–30Google Scholar
  22. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  23. Roemmich D, Johnson GC, Riser S, Davis R, Gilson J, Owens WB, Garzoli S, Schmid C, Ignaszewski M (2009) The Argo program: observing the global ocean with profiling floats. Oceanography 22:34–43CrossRefGoogle Scholar
  24. Scharroo R, Smith WHF, Lillibridge JL (2005) Satellite altimetry and the intensification of Hurricane Katrina. EOS Trans Am Geophys Union 86(40):366CrossRefGoogle Scholar
  25. Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128:1366–1383CrossRefGoogle Scholar
  26. Skamarock WC, Klemp JB, Dudhia J et al (2007) A description of the advanced research WRF version 2, tech. Note NCAR/TN-4681STR. Natl. Cent. for Atmos. Res., Boulder, p 88Google Scholar
  27. Wang GS, Qiao FL, Xia CS (2010) Parallelization of a coupled wave-circulation model and its application. Ocean Dyn 60(2):331–339. CrossRefGoogle Scholar
  28. Wang ZQ, Duan AM, Zheng YJ (2012) The simulation of typhoon Chanchu using a mesoscale coupled air-sea model GRAPES_OMLM. J Meteorol Res 70(2):261–274Google Scholar
  29. Wang W, Barker D, Bray J et al (2014) WRF version 3 modeling system user’s guideGoogle Scholar
  30. Wang GS, Zhao C, Xu JL et al (2016) Verification of an operational ocean circulation-surface wave coupled forecasting system for the China’s seas. Acta Oceanol Sin 35(2):19–28CrossRefGoogle Scholar
  31. Wu DS, Deng WD, Zhang JF et al (2001) A research on air-sea interface heat exchange under the typhoon over the South China Sea. Chin J Atmos Sci 25(3):329–341Google Scholar
  32. Xue GY, Zhang JH, Cehn HM et al (2007) Analysis on causes of strengthening of super strong typhoon Sammai(0608) and numerical experiments of the impact of SST on its intensity. Quat Sci 27(3):311–321Google Scholar
  33. Yang YZ, Qiao F, Zhao W et al (2005) MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanol Sin 27(2):1–7Google Scholar
  34. Yuan YL, Hua F, Pan ZD (1991) LAGFD-WAM numerical wave model-I. Basic physical model. Acta Oceanol Sin 10(4):483–488Google Scholar
  35. Zhao B, Qiao F, Cavaleri L, Wang G, Bertotti L, Liu L (2017) Sensitivity of typhoon modeling to surface waves and rainfall. J Geophys Res Oceans 122:1702–1723. CrossRefGoogle Scholar
  36. Zhou JL, Luo ZX (2002) Numerical study on the maximum velocity reinforcement in typhoons. J Nanjing Inst Meteor 25(2):199–206Google Scholar
  37. Zweng MM, Reagan JR, Antonov JI et al (2013) World Ocean Atlas 2013, Volume 2: Salinity. In: S Levitus (ed) A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 39 ppGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The First Institute of OceanographyState Oceanic Administration (SOA)QingdaoChina
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Key Laboratory of Marine Science and Numerical Modeling (MASNUM)SOAQingdaoChina

Personalised recommendations