Ocean Dynamics

, Volume 68, Issue 11, pp 1559–1570 | Cite as

Long-term statistics of potentially hazardous sea states in the North Sea 1958–2014

  • Tobias TeichEmail author
  • Nikolaus Groll
  • Ralf Weisse
Part of the following topical collections:
  1. Topical Collection on the 15th International Workshop on Wave Hindcasting and Forecasting in Liverpool, UK, September 10-15, 2017


Significant wave height and mean wave period are two of the most commonly used parameters to describe wave climate, wave climate variability, and their potential long-term changes. While these parameters are generally useful to characterize the distribution of waves within a given sea state, they provide less information about potentially high-risk situations. Over the recent years, a number of criteria were suggested that are considered to better characterize high-risk situations and which could bear a potential for the development of safety warning indices. Based on a multi-decadal high-resolution wind-wave hindcast, a climatology of such parameters is developed for the North Sea covering the years 1958–2014. More specifically, average conditions, inter-annual variability and long-term changes for unusually steep, rapidly developing and crossing sea states are considered. Generally, there are pronounced spatial variations in the frequency of such sea states, while over time, there is some seasonal and inter-annual variability but no substantial long-term trend could be identified.


Ocean waves Extreme waves Climate change North Sea 


  1. Bertin X, Prouteau E, Letetrel C (2013) A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob Planet Chang 106:77–83. CrossRefGoogle Scholar
  2. Bitner-Gregersen EM, Soares GC (2007) Uncertainty of average wave steepness prediction from global wave databases. In: Soares C, Das P (eds) Advancements in marine structures. Taylor & Francis Group, London, pp 3–10Google Scholar
  3. Bitner-Gregersen EM, Toffoli A (2012) On the probability of occurrence of rogue waves. Nat Hazards Earth Syst Sci 12(3):751–762. CrossRefGoogle Scholar
  4. Bitner-Gregersen EM, Soares CG, Vantorre M (2016) Adverse weather conditions for ship manoeuvrability. Transportation Research Procedia 14:1631–1640. CrossRefGoogle Scholar
  5. Cavaleri L, Bertotti L, Torrisi L, Bitner-Gregersen E, Serio M, Onorato M (2012) Rogue waves in crossing seas: the Louis Majesty accident. J Geophys Res Oceans 117(C11):C00J10. CrossRefGoogle Scholar
  6. Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds. Ocean Model 70:189–206. CrossRefGoogle Scholar
  7. Cox AT, Swail VR (2001) A global wave hindcast over the period 1958-1997: Validation and climate assessment. J Geophys Res Oceans 106(C2):2313–2329. CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. CrossRefGoogle Scholar
  9. Dodet G, Bertin X, Taborda R (2010) Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model 31(3-4):120–131. CrossRefGoogle Scholar
  10. Doong DJ, Tsai CH, Terng CT (2013) Hazardous waves in the sea. 6th East Asia Workshop for Marine Environment and Energy Ocean University of China, QingdaoGoogle Scholar
  11. Geyer B (2014) High-resolution atmospheric reconstruction for Europe 1948–2012: Coastdat2. Earth Syst Sci Data 6(1):147–164. CrossRefGoogle Scholar
  12. Groll N, Weisse R (2016) coastDat-2 North Sea wave hindcast for the period 1949–2014 performed with the wave model WAM.
  13. Groll N, Weisse R (2017) A multi-decadal wind-wave hindcast for the North Sea 1949–2014: Coastdat2. Earth Syst Sci Data 9(2):955–968. CrossRefGoogle Scholar
  14. Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University PressGoogle Scholar
  15. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-Year reanalysis project. Bull Am Meteorol Soc 77(3):437–471.<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  16. Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50–Year reanalysis: monthly means CD–ROM and documentation. Bull Am Meteorol Soc 82(2):247–267.<0247:TNNYRM>2.3.CO;2 CrossRefGoogle Scholar
  17. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  18. Morcrette JJ, Mlawe EJ, Iacono MJ, Clough SA (2001) ECMWF wave-model products. ECMWF Newsletter, 91,
  19. Niclasen BA, Simonsen K, Magnusson AK (2010) Wave forecasts and small-vessel safety: a review of operational warning parameters. Mar Struct 23(1):1–21. CrossRefGoogle Scholar
  20. Olagnon M, van Iseghem S (2001) Some cases of observe rogue waves and an attempt to characterise their occurrence conditions. In: Rogue Waves 2000: Proceedings of a workshop organized by Ifremer and held in Brest .
  21. Ponce de León S, Guedes Soares C (2015) Hindcast of extreme sea states in North Atlantic extratropical storms. Ocean Dyn 65(2):241–254. CrossRefGoogle Scholar
  22. Reistad M, Breivik Ø, Haakenstad H, Aarnes OJ, Furevik BR, Bidlot JR (2011) A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J Geophys Res Oceans 116 (C5):1945. CrossRefGoogle Scholar
  23. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17 (4):347–348. CrossRefGoogle Scholar
  24. Sterl A, Komen GJ, Cotton PD (1998) Fifteen years of global wave hindcasts using winds from the European Centre for Medium-Range Weather Forecasts reanalysis: validating the reanalyzed winds and assessing the wave climate. J Geophys Res Oceans 103(C3):5477–5492. CrossRefGoogle Scholar
  25. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  26. Toffoli A, Lefèvre J M, Bitner-Gregersen E, Monbaliu J (2005) Towards the identification of warning criteria: analysis of a ship accident database. Appl Ocean Res 27(6):281–291. CrossRefGoogle Scholar
  27. Toffoli A, Bitner-Gregersen EM, Osborne AR, Serio M, Monbaliu J, Onorato M (2011) Extreme waves in random crossing seas: laboratory experiments and numerical simulations. Geophysical Research Letters 38(6).
  28. WAMDI Group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810.;2 CrossRefGoogle Scholar
  29. Weisse R, Günther H (2007) Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn 57(3):161–172. CrossRefGoogle Scholar
  30. Weisse R, Bisling P, Gaslikova L, Geyer B, Groll N, Hortamani M, Matthias V, Maneke M, Meinke I, Meyer EMI, Schwichtenberg F, Stempinski F, Wiese F, Wöckner-Kluwe K (2015) Climate services for marine applications in Europe. Earth Perspectives 2(1):3887. CrossRefGoogle Scholar
  31. Zhang Z, Li XM (2017) Global ship accidents and ocean swell-related sea states. Natural Hazards and Earth System Sciences Discussions 1–13.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz-Zentrum GeesthachtCentre for Materials and Coastal ResearchGeesthachtGermany
  2. 2.Hamburg University of TechnologyHamburgGermany

Personalised recommendations