Advertisement

Ocean Dynamics

, Volume 68, Issue 10, pp 1285–1309 | Cite as

The effect of geometry and tidal forcing on hydrodynamics and net sediment transport in semi-enclosed tidal basins

A 2D exploratory model
  • Thomas BoelensEmail author
  • Henk Schuttelaars
  • George Schramkowski
  • Tom De Mulder
Article

Abstract

A new depth-averaged exploratory model has been developed to investigate the hydrodynamics and the tidally averaged sediment transport in a semi-enclosed tidal basin. This model comprises the two-dimensional (2DH) dynamics in a tidal basin that consists of a channel of arbitrary length, flanked by tidal flats, in which the water motion is being driven by an asymmetric tidal forcing at the seaward side. The equations are discretized in space by means of the finite element method and solved in the frequency domain. In this study, the lateral variations of the tidal asymmetry and the tidally averaged sediment transport are analyzed, as well as their sensitivity to changes in basin geometry and external overtides. The Coriolis force is taken into account. It is found that the length of the tidal basin and, to a lesser extent, the tidal flat area and the convergence length determine the behaviour of the tidally averaged velocity and the overtides and consequently control the strength and the direction of the tidally averaged sediment transport. Furthermore, the externally prescribed overtides can have a major influence on tidal asymmetry in the basin, depending on their amplitude and phase. Finally, for sufficiently wide tidal basins, the Coriolis force generates significant lateral dynamics.

Keywords

Tidal flats Tidal propagation Overtides Sediment transport 2D exploratory model Finite element method 

Notes

Funding information

The first author is a doctoral research fellow of IWT-Vlaanderen (project IWT 141275). The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by Ghent University, the Hercules Foundation, and the Flemish Government, department EWI.

References

  1. Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEniCS Project version 1.5. Arch Numer Softw 3(100).  https://doi.org/10.11588/ans.2015.100.20553
  2. Bolla Pittaluga M, Tambroni N, Canestrelli A, Slingerland R, Lanzoni S, Seminara G (2015) Where river and tide meet: the morphodynamic equilibrium of alluvial estuaries. J Geophys Res Earth Surf 120(1):75–94CrossRefGoogle Scholar
  3. Bolle A, Wang ZB, Amos C, De Ronde J (2010) The influence of changes in tidal asymmetry on residual sediment transport in the Western Scheldt. Cont Shelf Res 30(8):871–882CrossRefGoogle Scholar
  4. Brown J, Davies A (2010) Flood/ebb tidal asymmetry in a shallow sandy estuary and the impact on net sand transport. Geomorphology 114(3):431–439CrossRefGoogle Scholar
  5. Burchard H, Schuttelaars HM, Ralston DK (2018) Sediment trapping in estuaries. Annu Rev Mar Sci 10(1):371–395CrossRefGoogle Scholar
  6. Charlier RH (2010) The Zwin: from golden inlet to nature reserve. J Coast Res 27(4):746–756Google Scholar
  7. Charlton J, McNicoll W, West J (1975) Tidal and freshwater induced circulation in the Tay estuary. Proc R Soc Edinb Sect B Nat Environ 75(1–2):11–27CrossRefGoogle Scholar
  8. Chernetsky AS, Schuttelaars HM, Talke SA (2010) The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn 60(5):1219–1241CrossRefGoogle Scholar
  9. Coco G, Zhou Z, Van Maanen B, Olabarrieta M, Tinoco R, Townend I (2013) Morphodynamics of tidal networks: advances and challenges. Mar Geol 346:1–16CrossRefGoogle Scholar
  10. de Brye B, de Brauwere A, Gourgue O, Kärnä T, Lambrechts J, Comblen R, Deleersnijder E (2010) A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and rofi. Coast Eng 57(9):850–863CrossRefGoogle Scholar
  11. de Swart H, Zimmerman J (2009) Morphodynamics of tidal inlet systems. Annu Rev Fluid Mech 41:203–229CrossRefGoogle Scholar
  12. Dijkstra YM, Schuttelaars HM, Burchard H (2017) Generation of exchange flows in estuaries by tidal and gravitational eddy viscosity-shear covariance (ESCO). J Geophys Res Oceans 122(5):4217–4237CrossRefGoogle Scholar
  13. Dronkers J (1986) Tidal asymmetry and estuarine morphology. Neth J Sea Res 20(2-3):117–131CrossRefGoogle Scholar
  14. Elias E, Van der Spek A, Wang ZB, De Ronde J (2012) Morphodynamic development and sediment budget of the Dutch wadden sea over the last century. Neth J Geosci 91(3):293–310Google Scholar
  15. Friedrichs CT (2010) Barotropic tides in channelized estuaries. Contemp Issues Estuar Phys 27–61Google Scholar
  16. Friedrichs C (2011) Tidal flat morphodynamics: a synthesis. Virginia Institute of Marine Science, Gloucester Point, pp 137–170Google Scholar
  17. Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27(5):521–545CrossRefGoogle Scholar
  18. Friedrichs CT, Aubrey DG (1994) Tidal propagation in strongly convergent channels. J Geophys Res Oceans (1978–2012) 99(C2):3321–3336CrossRefGoogle Scholar
  19. Friedrichs CT, Madsen OS (1992) Nonlinear diffusion of the tidal signal in frictionally dominated embayments. J Geophys Res 97(N3C4):5637–5650CrossRefGoogle Scholar
  20. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331CrossRefGoogle Scholar
  21. Guo L, Wegen M, Wang ZB, Roelvink D, He Q (2016) Exploring the impacts of multiple tidal constituents and varying river flow on long-term, large-scale estuarine morphodynamics by means of a 1-D model. J Geophys Res Earth Surf 121(5):1000–1022CrossRefGoogle Scholar
  22. Hepkema TM, de Swart HE, Zagaris A, Duran-Matute M (2018) Sensitivity of tidal characteristics in double inlet systems to momentum dissipation on tidal flats: a perturbation analysis. Ocean Dyn 1–17Google Scholar
  23. Hibma A, Schuttelaars HM, Wang ZB (2003) Comparison of longitudinal equilibrium profiles of estuaries in idealized and process-based models. Ocean Dyn 53(3):252–269CrossRefGoogle Scholar
  24. Ianniello J (1977) Tidally induced residual currents in estuaries with constant breadth and depth. J Mar Res 35:755–786Google Scholar
  25. Kumar M, Schuttelaars HM, Roos PC, Möller M (2016) Three-dimensional semi-idealized model for tidal motion in tidal estuaries. Ocean Dyn 66(1):99–118CrossRefGoogle Scholar
  26. Lanzoni S, Seminara G (1998) On tide propagation in convergent estuaries. J Geophys Res Oceans (1978–2012) 103(C13):30793–30812CrossRefGoogle Scholar
  27. Li C, O’Donnell J (2005) The effect of channel length on the residual circulation in tidally dominated channels. J Phys Oceanogr 35(10):1826–1840CrossRefGoogle Scholar
  28. Li C, Valle-Levinson A (1999) A two-dimensional analytic tidal model for a narrow estuary of arbitrary lateral depth variation: The intratidal motion. J Geophys Res Oceans 104(C10):23525– 23543CrossRefGoogle Scholar
  29. Maris T, Cox T, Temmerman S, De Vleeschauwer P, Van Damme S, De Mulder T, Van den Bergh E, Meire P (2007) Tuning the tide: creating ecological conditions for tidal marsh development in a flood control area. Hydrobiologia 588(1):31–43CrossRefGoogle Scholar
  30. McBride RA, Byrnes MR, Hiland MW (1995) Geomorphic response-type model for barrier coastlines: a regional perspective. Mar Geol 126(1-4):143–159CrossRefGoogle Scholar
  31. Murray AB (2003) Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations. In: Prediction in geomorphology, pp 151–165Google Scholar
  32. Pingree R, Griffiths D (1979) Sand transport paths around the British Isles resulting from M 2 and M 4 tidal interactions. J Mar Biol Assoc U K 59(02):497–513CrossRefGoogle Scholar
  33. Pugh D (1987) Tides, surges and mean sea-level: a handbook for engineers and scientists, 472 ppGoogle Scholar
  34. Ridderinkhof W, de Swart H, van der Vegt M, Alebregtse N, Hoekstra P (2014) Geometry of tidal inlet systems: a key factor for the net sediment transport in tidal inlets. J Geophys Res Oceans 119(10):6988–7006CrossRefGoogle Scholar
  35. Rizal S (2002) Taylor’s problem: influences on the spatial distribution of real and virtual amphidromes. Cont Shelf Res 22(15):2147–2158CrossRefGoogle Scholar
  36. Savenije HH, Toffolon M, Haas J, Veling EJ (2008) Analytical description of tidal dynamics in convergent estuaries. J Geophys Res Oceans (1978–2012) 113(C10)Google Scholar
  37. Schramkowski G, de Swart H (2002) Morphodynamic equilibrium in straight tidal channels: combined effects of the coriolis force and external overtides. J Geophys Res Oceans 107(C12)Google Scholar
  38. Schuttelaars H, de Swart H (2000) Multiple morphodynamic equilibria in tidal embayments. J Geophys Res Oceans (1978–2012) 105(C10):24105–24118CrossRefGoogle Scholar
  39. Speer P, Aubrey D (1985) A study of non-linear tidal propagation in shallow inlet/estuarine systems part II: theory. Estuar Coast Shelf Sci 21(2):207–224CrossRefGoogle Scholar
  40. Stark J, Van Oyen T, Meire P, Temmerman S (2015) Observations of tidal and storm surge attenuation in a large tidal marsh. Limnol Oceanogr 60(4):1371–1381CrossRefGoogle Scholar
  41. Tambroni N, Seminara G (2006) Are inlets responsible for the morphological degradation of Venice lagoon? J Geophys Res Earth Surf 111(F3)Google Scholar
  42. Ter Brake MC, Schuttelaars HM (2011) Channel and shoal development in a short tidal embayment: an idealized model study. J Fluid Mech 677:503–529CrossRefGoogle Scholar
  43. Van de Kreeke J, Robaczewska K (1993) Tide-induced residual transport of coarse sediment; application to the Ems estuary. Neth J Sea Res 31(3):209–220CrossRefGoogle Scholar
  44. van Rijn LC (2011) Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent estuaries. Ocean Dyn 61(11):1719–1741CrossRefGoogle Scholar
  45. Vandenbruwaene W, Plancke Y, Verwaest T, Mostaert F (2013) Interestuarine comparison: hydrogeomorphology: hydro-and geomorphodynamics of the TIDE estuaries Scheldt, Elbe, Weser and Humber. TIDE Report Flanders Hydraulics Research WL 770Google Scholar
  46. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277(5325):494–499CrossRefGoogle Scholar
  47. Wang Z, Jeuken C, De Vriend H (1999) Tidal asymmetry and residual sediment transport in estuaries: a literature study and application to the Western Scheldt. Tech. rep. DeltaresGoogle Scholar
  48. Wei X, Kumar M, Schuttelaars HM (2018) Three-dimensional sediment dynamics in well-mixed estuaries: importance of the internally generated overtide, spatial settling lag, and gravitational circulation. J Geophys Res Oceans 123(2):1062–1090CrossRefGoogle Scholar
  49. Winant CD (2007) Three-dimensional tidal flow in an elongated, rotating basin. J Phys Oceanogr 37 (9):2345–2362CrossRefGoogle Scholar
  50. Winterwerp JC (2011) Fine sediment transport by tidal asymmetry in the high-concentrated Ems river: indications for a regime shift in response to channel deepening. Ocean Dyn 61(2–3):203–215CrossRefGoogle Scholar
  51. Zimmerman J (1982) On the Lorentz linearization of a quadratically damped forced oscillator. Phys Lett A 89(3):123–124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hydraulics Laboratory, Civil Engineering Department, Faculty of Engineering and ArchitectureGhent UniversityGhentBelgium
  2. 2.Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
  3. 3.Flanders Hydraulics ResearchAntwerpBelgium

Personalised recommendations