Ocean Dynamics

, Volume 68, Issue 10, pp 1239–1258 | Cite as

A multi-envelope vertical coordinate system for numerical ocean modelling

  • Diego BruciaferriEmail author
  • Georgy I. Shapiro
  • Fred Wobus


A multi-envelope generalised coordinate system for numerical ocean modelling is introduced. In this system, computational levels are curved and adjusted to multiple ‘virtual bottoms’ (aka envelopes) rather than following geopotential levels or the actual bathymetry. This allows defining computational levels which are optimised to best represent different physical processes in different sub-domains of the model. In particular, we show how it can be used to improve the representation of tracer advection in the ocean interior. The new vertical system is compared with a widely used z-partial step scheme. The modelling skill of the models is assessed by comparison with the analytical solutions or results produced by a model with a very high-resolution z-level grid. Three idealised process-oriented numerical experiments are carried out. Experiments show that numerical errors produced by the new scheme are much smaller than those produced by the standard z-partial step scheme at a comparable vertical resolution. In particular, the new scheme shows superiority in simulating the formation of a cold intermediate layer in the ocean interior and in representing dense water cascading down a steep topography.


Ocean modelling Vertical coordinate Oceanic transport 



The authors are grateful to the valuable comments and suggestions of the two anonymous reviewers which have greatly contributed to improving the manuscript.

Funding information

This work was funded by the EASME/EMFF/2014/ - Seabasin Checkpoints - Lot 4 - ‘BLACK SEA’ project.


  1. Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125(9):2293–2315CrossRefGoogle Scholar
  2. Adcroft A, Campin J-M (2004) Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Model 7(3-4):269–284CrossRefGoogle Scholar
  3. Barnier B, Marchesiello P, De Miranda AP, Molines J-M, Coulibaly M (1998) A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic. Part I: Model configuration with error estimates. Deep Sea Res I(45):543–572CrossRefGoogle Scholar
  4. Barnier B, Madec G, Penduff T, Molines J-M, Treguier A-M, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5-6):543– 567CrossRefGoogle Scholar
  5. Berntsen J (2002) Internal pressure errors in sigma coordinate ocean models. J Atmos Ocean Technol 21 (1994):1403–1413CrossRefGoogle Scholar
  6. Bleck R, Boudra D (1981) Initial testing of a numerical ocean circulation model using a hybrid (Quasi-Isopycnic) vertical coordinate. J Phys Oceanogr 11(6):755–770CrossRefGoogle Scholar
  7. Bleck R (1998) Ocean modeling in isopycnic coordinates. In: Chassignet EP, Verron J (eds) Ocean modeling and parameterization, NATO ASI mathematical and physical sciences series, vol 516. Kluwer Academic Publishers, Dordrecht, pp 423–448Google Scholar
  8. Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 4(1):55–88CrossRefGoogle Scholar
  9. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Three-dimensional coastal ocean models, pp 1–16Google Scholar
  10. Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293–311CrossRefGoogle Scholar
  11. Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Hogan PJ, Wallcraft AJ, Bleck R (2006) Ocean prediction with the hybrid coordinate ocean model (HYCOM). In: Chassignet EP, Verron J (eds) Ocean weather forecasting. Springer-Verlag, Berlin/Heidelberg, pp 413–426Google Scholar
  12. Chubarenko I, Demchenko N (2010) On contribution of horizontal and intra-layer convection to the formation of the Baltic Sea cold intermediate layer. Ocean Sci 6(1):285–299CrossRefGoogle Scholar
  13. Cyr F, Bourgault D, Galbraith PS (2011) Interior versus boundary mixing of a cold intermediate layer. J Geophys Res 116(C12):C12029CrossRefGoogle Scholar
  14. de Boor C (1978) A practical guide to splines. Springer-Verlag, New YorkCrossRefGoogle Scholar
  15. Dukhovskoy DS, Morey SL, Martin PJ, O’Brien JJ, Cooper C (2009) Application of a vanishing, quasi-sigma, vertical coordinate for simulation of high-speed, deep currents over the Sigsbee Escarpment in the Gulf of Mexico. Ocean Model 28(4):250–265CrossRefGoogle Scholar
  16. Enriquez CE, Shapiro GI, Souza AJ, Zatsepin AG (2005) Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dyn 55(5-6):476–489CrossRefGoogle Scholar
  17. Ezer T, Mellor GL (1992) A numerical study of the variability and the separation of the gulf stream, induced by surface atmospheric forcing and lateral boundary flows. J Phys Oceanogr 22(6):660–682CrossRefGoogle Scholar
  18. Ezer T, Mellor GL (2004) A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Model 6(3-4):379–403CrossRefGoogle Scholar
  19. Ezer T (2005) Entrainment, diapycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor–Yamada turbulence scheme. Ocean Model 9(2):151–168CrossRefGoogle Scholar
  20. Ezer T (2016) Revisiting the problem of the Gulf Stream separation: on the representation of topography in ocean models with different types of vertical grids. Ocean Model 104:15–27CrossRefGoogle Scholar
  21. Furner R (2012) A review of lateral diffusion for Met Office ocean shelf modelling. Technical report, Met OfficeGoogle Scholar
  22. Gangopadhyay A, Robinson AR (2002) Feature-oriented regional modeling of oceanic fronts. Dyn Atmos Oceans 36(1-3):201–232CrossRefGoogle Scholar
  23. Gerdes R (1993a) A primitive equation ocean circulation model using a general vertical coordinate transformation: 1. Description and testing of the model. J Geophys Res 98(C8):14683CrossRefGoogle Scholar
  24. Gerdes R (1993b) A primitive equation ocean circulation model using a general vertical coordinate transformation: 2. Application to an overflow problem. J Geophys Res 98(C8):14703CrossRefGoogle Scholar
  25. Griffies S, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000a) Developments in ocean climate modelling. J Comput Phys 2(3-4):123–192Google Scholar
  26. Griffies S, Pacanowski RC, Hallberg R (2000b) Spurious Diapycnal Mixing Associated with Advection in a z -Coordinate Ocean Model. Mon Weather Rev 128(3):538–564CrossRefGoogle Scholar
  27. Griffies S (2004) Fundamentals of ocean climate models. Princeton University Press, PrincetonGoogle Scholar
  28. Haidvogel D, Beckmann A, Hedström KS (1991) Dynamical simulations of filament formation and evolution in the Coastal Transition Zone. J Geophys Res 96(C8):15017CrossRefGoogle Scholar
  29. Haidvogel D, Beckmann A (1999) Numerical ocean circulation modeling. Imperial College Press, LondonCrossRefGoogle Scholar
  30. Haney R (1991) On the pressure gradient force over steep topography in sigma coordinate ocean models. J Phys Oceanogr 21:610–619CrossRefGoogle Scholar
  31. Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253CrossRefGoogle Scholar
  32. Hofmeister R, Burchard H, Beckers JM (2010) Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Model 33(1-2):70–86CrossRefGoogle Scholar
  33. Holt J, Hyder P, Ashworth M, Harle J, Hewitt HT, Liu H, New AL, Pickles S, Porter A, Popova E, Allen JI, Siddorn J, Wood R (2017) Prospects for improving the representation of coastal and shelf seas in global ocean models. Geosci Model Dev 10(1):499–523CrossRefGoogle Scholar
  34. Ivanov VV, Shapiro GI, Huthnance J, Aleynik DL, Golovin PN (2004) Cascades of dense water around the world ocean. Prog Oceanogr 60(1):47–98CrossRefGoogle Scholar
  35. James I (1996) Advection schemes for shelf sea models. J Mar Syst 8(3-4):237–254CrossRefGoogle Scholar
  36. Kantha LH, Clayson CA (2000) Numerical models of oceans and oceanic processes. Academic Press, CambridgeGoogle Scholar
  37. Kasahara A (1974) Various vertical coordinate systems used for numerical weather prediction. Mon Weather Rev 102(7):509–522CrossRefGoogle Scholar
  38. Klingbeil K, Mohammadi-Aragh M, Grȧwe U, Burchard H (2014) Quantification of spurious dissipation and mixing – Discrete variance decay in a Finite-Volume framework. Ocean Model 81:49–64CrossRefGoogle Scholar
  39. Laanaia N, Wirth A, Molines JM, Barnier B, Verron J (2010) On the numerical resolution of the bottom layer in simulations of oceanic gravity currents. Ocean Sci 6(2):563–572CrossRefGoogle Scholar
  40. Leclair M, Madec G (2011) z-Coordinate, an arbitrary Lagrangian-Eulerian coordinate separating high and low frequency motions. Ocean Modell 37(3-4):139–152CrossRefGoogle Scholar
  41. Legg S, Hallberg R, Girton JB (2006) Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Model 11(1-2):69–97CrossRefGoogle Scholar
  42. Legg S, Briegleb B, Chang Y, Chassignet EP, Danabasoglu G, Ezer T, Gordon AL, Griffies S, Hallberg R, Jackson L, Large W, Özgökmen TM, Peters H, Price J, Riemenschneider U, Wu W, Xu X, Yang J (2009) Improving oceanic overflow representation in climate models: The gravity current entrainment climate process team. Bull Am Meteorol Soc 90(5):657–670CrossRefGoogle Scholar
  43. Lemarié F, Kurian J, Shchepetkin AF, Jeroen Molemaker M, Colas F, McWilliams JC (2012) Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Model 42:57–79CrossRefGoogle Scholar
  44. Madec G, Delecluse P, Crėpon M, Lott F (1996) Large-scale preconditioning of deep-water formation in the northwestern mediterranean sea. J Phys Oceanogr 26(8):1393–1408CrossRefGoogle Scholar
  45. Madec G, The NEMO Team (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN 1288-1619Google Scholar
  46. Maqueda M, Holloway G (2006) Second-order moment advection scheme applied to Arctic Ocean simulation. Ocean Model 14(3-4):197–221CrossRefGoogle Scholar
  47. Marchesiello P, Debreu L, Couvelard X (2009) Spurious diapycnal mixing in terrain-following coordinate models: the problem and a solution. Ocean Model 26(3-4):156–169CrossRefGoogle Scholar
  48. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37 (1):1–64CrossRefGoogle Scholar
  49. Marti O, Madec G, Delecluse P (1992) Comment on ‘Net diffusivity in ocean general circulation models with nonuniform grids’ by F. L. Yin and I Y. Fung. J Geophys Res 97(C8):12763CrossRefGoogle Scholar
  50. Martinho AS, Batteen ML (2006) On reducing the slope parameter in terrain-following numerical ocean models. Ocean Model 13(2):166–175CrossRefGoogle Scholar
  51. Mellor GL, Blumberg AF (1985) Modeling vertical and horizontal diffusivities with the sigma coordinate system. Mon Weather Rev 113(8):1379–1383CrossRefGoogle Scholar
  52. Mellor GL, Ezer T, Oey L-Y (1994) The pressure gradient conundrum of sigma coordinate ocean models. J Atmos Ocean Technol 11(4):1126–1134CrossRefGoogle Scholar
  53. Mellor GL, Oey LY, Ezer T (1998) Sigma coordinate pressure gradient errors and the seamount problem. J Atmos Ocean Technol 15(5):1122–1131CrossRefGoogle Scholar
  54. Mellor GL, Häkkinen SM, Ezer T, Patchen RC (2002) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods J (eds) Ocean forecasting: conceptual basis and applications. Springer, Berlin, pp 55–72Google Scholar
  55. MyOcean2 (2014) MyOcean catalogue of PRODUCTS, V4.0Google Scholar
  56. Nof D (1983) The translation of isolated cold eddies on a sloping bottom. Deep Sea Res Part A Oceanograph Res Pap 30(2):171–182CrossRefGoogle Scholar
  57. Oddo P, Adani M, Pinardi N, Fratianni C, Tonani M, Pettenuzzo D (2009) A nested Atlantic-Mediterranean sea general circulation model for operational forecasting. Ocean Sci 5:461–473CrossRefGoogle Scholar
  58. O’Dea EJ, Arnold AK, Edwards KP, Furner R, Hyder P, Martin MJ, Siddorn JR, Storkey D, While J, Holt JT, Liu H (2012) An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf. J Oper Oceanogr 5(1):3–17CrossRefGoogle Scholar
  59. Pacanowski RC, Gnanadesikan A, Olume V (1998) Transient response in a z-Level ocean model that resolves topography with partial cells. Mon Weather Rev 126(12):3248–3270CrossRefGoogle Scholar
  60. Redi MH (1982) Oceanic isopycnal mixing by coordinate rotation. J Phys Oceanogr 12(10):1154–1158CrossRefGoogle Scholar
  61. Roberts M, Marshall D (1998) Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J Phys Oceanogr 28(10):2050–2063CrossRefGoogle Scholar
  62. Roquet F, Madec G, Brodeau L, Nycander J (2015) Defining a simplified yet realistic equation of state for seawater. J Phys Oceanogr 45(10):2564–2579CrossRefGoogle Scholar
  63. Shapiro GI, Hill AE (1997) Dynamics of dense water cascades at the shelf edge. J Phys Oceanogr 27 (11):2381–2394CrossRefGoogle Scholar
  64. Shapiro GI, Luneva M, Pickering J, Storkey D (2013) The effect of various vertical discretization schemes and horizontal diffusion parameterization on the performance of a 3-D ocean model: the Black Sea case study. Ocean Sci 9(2):377–390CrossRefGoogle Scholar
  65. Shchepetkin AF (2003) A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J Geophys Res 108(C3):3090CrossRefGoogle Scholar
  66. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347– 404CrossRefGoogle Scholar
  67. Siddorn JR, Furner R (2013) An analytical stretching function that combines the best attributes of geopotential and terrain-following vertical coordinates. Ocean Model 66:1–13CrossRefGoogle Scholar
  68. Song Y, Haidvogel D (1994) A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J Comput Phys 115(1):228–244CrossRefGoogle Scholar
  69. Song YT, Hou TY (2006) Parametric vertical coordinate formulation for multiscale, Boussinesq, and non-Boussinesq ocean modeling. Ocean Model 11(3-4):298–332CrossRefGoogle Scholar
  70. Treguier AM, Dukowicz JK, Bryan K (1996) Properties of nonuniform grids used in ocean general circulation models. J Geophys Res: Oceans 101(C9):20877–20881CrossRefGoogle Scholar
  71. Trotta F, Fenu E, Pinardi N, Bruciaferri D, Giacomelli L, Federico I, Coppini G (2016) A structured and unstructured grid relocatable ocean platform for forecasting (SURF). Deep-Sea Res Part II: Top Stud Oceanogr 133:54–75CrossRefGoogle Scholar
  72. Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265CrossRefGoogle Scholar
  73. Umlauf L, Burchard H (2005) Second-order turbulence closure models for geophysical boundary layers. a review of recent work. Cont Shelf Res 25(7-8):795–827CrossRefGoogle Scholar
  74. Valeport (2017) Model 106 Current Meter. Accessed 12 November 2017
  75. Wobus F, Shapiro GI, Maqueda M, Huthnance J (2011) Numerical simulations of dense water cascading on a steep slope. J Mar Res 69(2):391–415CrossRefGoogle Scholar
  76. Wobus F, Shapiro GI, Huthnance J, Maqueda MAM (2013) The piercing of the Atlantic Layer by an Arctic shelf water cascade in an idealised study inspired by the Storfjorden overflow in Svalbard. Ocean Model 71:54–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringUniversity of PlymouthPlymouthUK
  2. 2.Shirshov Institute of OceanologyMoscowRussia

Personalised recommendations