Skip to main content
Log in

A new instability mechanism related to high-angle waves

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Waves with a large incidence angle in deep water can drive a morphodynamic instability on a sandy coast whereby shoreline sand waves, cuspate forelands, and spits can emerge. This instability is related to bathymetric perturbations extending offshore in the shoaling zone. Here, we explore a different mechanism where the large incidence angle is supposed to occur at breaking and the bathymetric perturbations occur only in the surf zone. For wave incidence angles at breaking above ≈ 45, the one-line approximation of coastal dynamics predicts an unstable shoreline. This instability (EHAWI) is scale-free and the growth rate increases without bound for decreasing wavelength. Here we use a 2DH morphodynamic model resolving surf zone instabilities to investigate whether EHAWI could approximate a real instability in nature with a characteristic length scale. Assuming very idealized conditions on the bathymetric profile and sediment transport, we find a 2DH instability mode consisting of shore-oblique up-current bars coupled to a meandering of the longshore current. This mode grows for high-angle waves, above about 30 (offshore) and the maximum growth rate occurs for the angle maximizing the angle at breaking, about 70 (offshore). The dominant wavelength is of the order of the surf zone width. Interestingly, for long sand waves, the growth rate never becomes negative and it matches very well the anti-diffusive behavior of EHAWI. This distinguishes the present instability mode from other modes found in previous studies for other bathymetric and sediment transport conditions. Thus, we conclude that EHAWI approximates a real morphodynamic instability only for quite particular conditions. In such case, a characteristic length scale of the instability emerges thanks to surf zone processes that damp short wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almar R, Coco G, Bryan K, Huntley D, Short A, Senechal N (2008) Video observations of beach cusp morphodynamics. Mar Geol 254:216–223

    Article  Google Scholar 

  • Ashton A, Murray AB, Arnault O (2001) Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 414:296–300

    Article  Google Scholar 

  • Ashton A, Murray AB (2006) High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J Geophys Res 111:F04,011. https://doi.org/10.1029/2005JF000,422

    Google Scholar 

  • Ashton AD, Murray AB, Littlewood R, Lewis DA, Hong P (2009) Fetch-limited self-organization of elongate water bodies. Geol 37:187–190

    Article  Google Scholar 

  • Calvete D, Dodd N, Falqués A, van Leeuwen SM (2005) Morphological development of rip channel systems: Normal and near normal wave incidence. J Geophys Res 110(C10006):1–18. https://doi.org/10.1029/2004JC002803

  • Church JC, Thornton EB (1993) Effects of breaking wave induced turbulence within a longshore current model. Coastal Eng 20:1–28

    Article  Google Scholar 

  • Coco G, Huntley DA, O’Hare TJ (2000) Investigation of a self-organization model for beach cusp formation and development. J Geophys Res 105(C9):21,991–22,002

    Article  Google Scholar 

  • Coco G, Murray AB (2007) Patterns in the sand: from forcing templates to self-organization. Geomorphology 91(271-290):271–290

  • Deigaard R, Drønen N, Fredsoe J, Jensen JH, Jørgensen MP (1999) A morphological stability analysis for a long straight barred coast. Coast Eng 36(3):171–195

    Article  Google Scholar 

  • Dodd N, Stoker A, Calvete D, Sriariyawat A (2008) On beach cusp formation. J Fluid Mech 597:145–169

    Article  Google Scholar 

  • Falqués A, Coco G, Huntley DA (2000) A mechanism for the generation of wave-driven rhythmic patterns in the surf zone. J Geophys Res 105(C10):24,071–24,088

    Article  Google Scholar 

  • Falqués A, Calvete D (2005) Large scale dynamics of sandy coastlines. Diffusivity and instability. J Geophys Res 110(C03007):1–15. https://doi.org/10.1029/2004JC002587

  • Garnier R, Calvete D, Falqués A, Caballeria M (2006) Generation and nonlinear evolution of shore-oblique/transverse sand bars. J Fluid Mech 567:327–360

    Article  Google Scholar 

  • Idier D, Falqués A (2014) How kilometric sandy shoreline undulations correlate with wave and morphology characteristics: preliminary analysis on the Atlantic coast of Africa. Adv Geosci 39:55–60. https://doi.org/10.5194/adgeo-39-55-2014

    Article  Google Scholar 

  • Kaergaard K, Fredsoe J (2013) Numerical modeling of shoreline undulations part 1: constant wave climate. Coastal Eng 75:64–76

    Article  Google Scholar 

  • Komar PD (1998) Beach Processes and Sedimentation, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Medellín G, Falqués A, Medina R, González M (2009) Sand waves on a low-energy beach at ’El Puntal’ spit, Spain: Linear Stability Analysis. J Geophys Res 114(C03022):143–156. https://doi.org/10.1029/2007JC004426

  • Orzech MD, Reniers AJHM, Thornton EB, MacMahan JH (2011) Megacusps on rip channel bathymetry: observations and modeling. Coastal Eng 58:890–907

    Article  Google Scholar 

  • Pelnard-Considère R (1956) Essai de theorie de l’evolution des formes de rivage en plages de sable et de galets. In: 4Th journees de l’hydraulique, les energies de la mer, paris, société Hydrotechnique de France, III(1), pp 289–298

  • Ribas F, Falqués A, Montoto A (2003) Nearshore oblique sand bars. J Geophys Res 108(C43119):1–17. https://doi.org/10.1029/2001JC000985

  • Ribas F, de Swart HE, Calvete D, Falqués A (2012) Modeling and analyzing observed transverse sand bars in the surf zone. J Geophys Res 117(F02013):1–16. https://doi.org/10.1029/2011JF002158

  • Ribas F, Falqués A, de Swart HE, Dodd N, Garnier R, Calvete D (2015) Understanding coastal morphodynamic patterns from depth-averaged sediment concentration Rev Geophys 53:362–410. https://doi.org/10.1002/2014RG000457

  • Soulsby RL (1997) Dynamics of marine sands Thomas Telford. U.K, London

    Google Scholar 

  • van den Berg N, Falqués A, Ribas F (2012) Modelling large scale shoreline sand waves under oblique wave incidence. J Geophys Res 117(F03019):1–18. https://doi.org/10.1029/2011JF002177

Download references

Acknowledgements

This research is part of the project CTM2015-66225-C2-1-P funded by the Spanish Government and cofunded by the E.U. (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Falqués.

Additional information

Responsible Editor: David R. Fuhrman

This article is part of the Topical Collection on the 8th International conference on Coastal Dynamics, Helsingør, Denmark, 12–16 June 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falqués, A., Kakeh, N. & Calvete, D. A new instability mechanism related to high-angle waves. Ocean Dynamics 68, 1169–1179 (2018). https://doi.org/10.1007/s10236-018-1186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-018-1186-0

Keywords

Navigation