Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tide circulation patterns in a coastal lagoon under sea-level rise


This study evaluates the patterns and effects of relative sea-level rise on the tidal circulation of the basin of the Ria Formosa coastal lagoon using a process-based model that is solved on an unstructured mesh. To predict the changes in the lagoon tidal circulation in the year 2100, the model is forced by tides and a static sea level. The bathymetry and the basin geometry are updated in response to sea-level rise for three morphological response scenarios: no bed updating, barrier island rollover, and basin infilling. Model results indicate that sea-level rise (SLR) will change the baseline current velocity patterns inside the lagoon over the ~100-year study period, due to a strong reduction in the area of the intertidal basin. The basin infilling scenario is associated with the most important adjustments of the tidal circulation (i.e., increases in the flood velocities and delays in the ebb tide), together with an increase in the cumulative discharges of the tidal inlets. Under sea-level rise and in the basin infilling scenario, the salt marshes and tidal flats experience increases in the tidal range and current asymmetry. Basin infilling changes the sediment flushing capacity of the lagoon, leading to the attenuation of the flood dominance in the main inlet and the strengthening of the flood dominance in the two secondary inlets. The predictions resulting from these scenarios provide very useful information on the long-term evolution of similar coastal lagoons that experience varying degrees of SLR. This study highlights the need for research focusing on the quantification of the physical and socio-economic impacts of SLR on lagoon systems, thus enabling the development of effective adaptation strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Allen G, Mandelli E, Zimmermann JPF (1981) Physics, geology, chemistry. In: Lasserre P, Postma H (eds) Coastal lagoon research, present and future: proceedings of a seminar. UNESCO Tech Pap Mar Sci 32. United Nations Educational, Scientific, and Cultural Organization, Paris, pp 29–50

  2. Anthony A, Atwood J, August P, Byron C, Cobb S, Foster C, Fry C, Gold A, Hagos K, Heffner L, Kellogg DQ, Lellis-Dibble K, Opaluch JJ, Oviatt C, Pfeiffer-Herbert A, Rohr N, Smith L, Smythe T, Swift J, Vinhateiro N (2009) Coastal lagoons and climate change: ecological and social ramifications in U.S. Atlantic and Gulf coast ecosystems. Ecol Soc 14:8

  3. Antunes C, Taborda R (2009) Sea level at Cascais tide gauge: data, analysis and results. J Coastal Res SI 56:218–222 (Lisbon, Portugal, ISBN)

  4. Aubrey DG, Speer PE (1985) A study of non-linear tidal propagation in shallow inlet/ estuarine systems. Part I: observations. Estuar Coast Shelf Sci 21:185–205

  5. Bettencourt, P., 1994. Les Environements Sédimentaires de la Côte Sotavento (Algarve, Sud Portugal) et leur Évolution Holocéne et Actuelle. Ph.D. thesis, University Bordeaux (in French)

  6. Bouma TJ, van Duren LA, Temmerman S, Claverie T, Blanco-Garcia A, Ysebaert T, Herman PMJ (2007) Spatial patterns in flow- and sedimentation within vegetation patches: comparing field, flume and hydrodynamic modelling experiments. Cont Shelf Res 27:1020–1045

  7. Brito AC, Newton A, Tett P, Fernandes TF (2012) How will shallow coastal lagoons respond to climate change? A modelling investigation. Estuar Coast Shelf Sci 112:98–104

  8. Bruneau N, Fortunato AB, Dodet G, Freire P, Oliveira A, Bertin X (2011) Future evolution of a tidal inlet due to changes in wave climate, sea level and lagoon morphology (Óbidos lagoon, Portugal). Cont Shelf Sci 31(18):1915–1930

  9. Cabaço S, Santos R, Duarte CM (2008) The impact of sediment burial and erosion on seagrasses: a review. Estuar Cont Shelf Sci 79:354–366

  10. Carrasco AR, Ferreira Ó, Roelvink D (2016) Coastal lagoons and rising sea level: a review. Earth-Sci Rev 154:356–368

  11. Church et al (2013) Sea level change, in climate change 2013. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) The Physical Science Basis. Cambridge University Press, Cambridge

  12. Costa M, Silva R, Vitorino J 2001 Contribuição para o estudo do clima de agitação marítima na costa Portuguesa. 2as Jornadas Portuguesas de Engenharia Costeira e Portuária in CD-ROM (in Portuguese)

  13. Deltares 2006 D-flow flexible mesh- user manual, Deltares, pp386

  14. Dias JA (1988) Aspectos geológicos do litoral Algarvio. Geonovas 10:113–128. (in Portuguese)

  15. Dias JM, Sousa MC (2009) Numerical modelling of Ria Formosa tidal dynamics. J Coast Res SI 56:1345–1349

  16. Dias JA, Taborda R (1992) Tidal gauge data in deducing secular trends of relative sea level and crustal movements in Portugal. J Coast Res 8:655–659

  17. Dias JM, Sousa MC, Bertin X, Fortunato AB, Oliveira A (2009) Numerical modeling of the impact of the Ancão inlet relocation (Ria Formosa, Portugal). Environ Model Softw 24(6):711–725

  18. Dissanayake DMPK, Ranasinghe R, Roelvink JA (2012) Themorphological response of large tidal inlet/basin systems to relative sea level rise. Clim Chang 113:253–276

  19. Duarte B, Valentim JM, Dias JM, Silva H, Marques JC, Caçador I (2014) Modelling sea level rise (SLR) impacts on salt marsh detrital outwelling C and N exports from an estuarine coastal lagoon to the ocean (Ria de Aveiro, Portugal). Ecol Model 289:36–44

  20. Duran-Matute M, Gerkema T, Sassi M (2016) Quantifying the residual volume transport through a multipleinlet system in response to wind forcing: the case of the western Dutch Wadden Sea. J Geophys Res-Oceans 121:16

  21. Egbert D, Bennetta F, Foremann GGM (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99:24821–24852

  22. Eitner V (1996) Geomorphological response of the east Frisian barrier islands to sea-level rise: an investigation of past and future evolution. Geomorphology 15:57–65

  23. Fabião JPFF, Rodrigues MFG, Fortunato AB, Jacob JMQB, Cravo AMF (2016) Water exchanges between a multi-inlet lagoon and the ocean: the role of forcing mechanisms. Ocean Dyn 66:173–194

  24. Ferla M, Cordella M, Michielli L, Rusconi A (2007) Long-term variations on sea level and tidal regime in the lagoon of Venice. Estuar Coast Shelf Sci 75:214–222

  25. Ferreira Ó, Dias JA, Taborda R (2008) Implications of sea-level rise for continental Portugal. J Coast Res 24(2):317–324

  26. FitzGerald DM, Buynevich IV, Argow B (2006) Model of tidal inler and barrier island dynamics in a regime of accelerated sea level rise. J Coast Res SI 39:789–795

  27. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:602–647

  28. Fortunato AB, Rodrigues M, Dias JM, Lopes C, Oliveira A (2013) Generating inundation maps for a coastal lagoon: a case study in the Ria de Aveiro (Portugal). Ocean Eng 64:60–71

  29. Friedrichs CT, Aubrey DG, Speer PE (1990) Impacts of relative sea-level rise on evolution of shallow estuaries. Adv Ser Ocean Eng 38:105–122

  30. Heerling G, Winter C (2015) Tidally-and wind-driven residual circulation at the multiple-inlet system east Frisian Wadden Sea. Cont Shelf Res 106:45–59

  31. Hibma A, Schuttelaars HM, Wang ZB (2003) Comparison of longitudinal equilibrium profiles in idealized and process-based models. Ocean Dyn 53(3):252–269

  32. Hughes ZJ, FitzGerald DM, Wilson CA, Pennings SC, Wieski K, Mahadevan A (2009) Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophys Res Lett 36:L03602

  33. IPCC (2001) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1032

  34. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996

  35. IPCC (2014) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University. Press, Cambridge

  36. Jacob J, Cardeira S, Rodrigues M, Bruneau N, Azevedo A, Fortunato AB, Rosa M, Cravo A 2013 Experimental and numerical study of the hydrodynamics of the western sector of Ria Formosa. In: Conley DC, Masselink G, Russell PE, O’Hare TJ (eds) Proceedings 12th international coastal symposium (Plymouth, England). J. Coast Res. SI65:2011–2016

  37. Kernkamp HWJ, Van Dam A, Stelling GS, De Goede ED (2010) Efficient scheme for the shallow water equations on unstructured grids with application to the continental shelf. Ocean Dyn 61:1175–1188

  38. Kirwan ML, Walters DC, Reay WG, Carr JA (2016) Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys Res Lett 43, 8pp:4366–4373

  39. Lencart e Silva JD, Lopes CL, Picado A, Sousa MC, Dias MJ (2014) Tidal dispersion and flushing times in a multiple inlet lagoon. J Coast Res SI 70:598–603

  40. Lopes CL, Plecha S, Silva PA, Dias JM (2013) Influence of morphological changes in a lagoon flooding extension: case study of Ria de Aveiro (Portugal). J Coast Res 165:SI65 1158–SI65 1163

  41. Mcleod E, Poulter B, Hinkel J, Reyes E, Salm R (2010) Sea-level rise impact models and environmental conservation: a review of models and their applications. Ocean Coast Manag 53:507–517

  42. Mendes R, Vaz N, Dias JM (2013) Potential impacts of the mean sea level rise on the hydrodynamics of the Douro river estuary. J. Coastal Res. 65:1951–1956

  43. Morris BD, Davidson MA, Huntley DA (2001) Measurements of the response of a coastal inlet using video monitoring techniques. Mar Geol 175:251–272

  44. Neumeier U, Ciavola P (2004) Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. J Coast Res 20:435–447

  45. Newton A, Icely J, Cristina S, Brito A, Cardoso AC, Colijn F, Riva SD, Gertz F, Hansen JH, Holmer M, Ivanova K, Leppäkoski E, Canu DM, Mocennim C, Mudge S, Murray N, Pejrup M, Razinkovas A, Reizopoulou S, Pérez-Ruzafa A, Schernewski G, Schubert H, Carr L, Solidoro C, Viaroli P, Zaldívar JM (2014) An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar Coast Shelf Sci 140:95–122

  46. Pacheco A, Vila-Concejo A, Ferreira Ó, Dias JA (2008) Assessment of tidal inlet evolution and stability using sediment budget computations and hydraulic parameter analysis. Mar Geol 247:104–127

  47. Pacheco A, Ferreira Ó, Williams JJ, Garel E, Vila-Concejo A, Dias JA (2010) Hydrodynamics and equilibrium of a multiple-inlet system. Mar Geol 274:32–42

  48. Pacheco A, Ferreira Ó, Carballo R, Iglesias G (2014) Evaluation of the production of tidal stream energy in an inlet channel by coupling field data and numerical modelling. Energy 71:104–117

  49. Passeri DL, Hagen SC, Medeiros SC, Bilskie MV, Alizad K, Wang D (2015a) The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future 3:159–181

  50. Passeri DL, Hagen SC, Medeiros SC, Bilskie MV (2015b) Impacts of historic morphology and sea level rise on tidal hydrodynamics in a micro tidal estuary (Grand Bay, Mississippi). Cont Shelf Res 111:150–158

  51. Passeri DL, Hagen SC, Plant NG, Bilskie MV, Medeiros SC, Alizad K 2016 Tidal hydrodynamics under future sea level rise and coastal morphology in the northern Gulf of Mexico. Earth’s Future 4

  52. Perillo GME, Iribarne O (2003) Processes of tidal channel development in salt and freshwater marshes. Earth Surf Process Landf 28:1473–1482

  53. Pickering MD, Horsburgh KJ, Blundell JR, Hirschic JJM, Nicholls RJ, Verlaan M, Wells NC (2017) The impact of future sea-level rise on the global tides. Cont Shelf Res 142:50–68

  54. Pilkey O, Neal W, Monteiro J, Dias J (1989) Algarve Barrier Islands: a noncoastal-plain system in Portugal. J Coast Res 5(2):239–261

  55. Pugh DT (1987) Tides, surges and mean sea level: a handbook for engineers and scientists. John Willey & Sons, Chichester, 472p

  56. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

  57. Ranasinghe R, Duong TM, Uhlenbrook S, Roelvink D, Stive M (2013) Climate-change impact assessment for inlet-interrupted coastlines. Nat Clim Chang 3:83–87

  58. Salles P, Voulgaris G, Aubrey DG (2005) Contribution of nonlinear mechanisms in the persistence of multiple tidal inlet systems. Estuar Coast Shelf Sci 65:475–491

  59. Sampath DMR, Boski T (2016) Morphological response of the saltmarsh habitats of the Guadiana estuary due to flow regulation and sea-level rise. Estuar Coast Shelf Sci 183:314–326

  60. Schuttelaars HM, de Swart HE (1996) An idealized long-term morphodynamic model of a tidal embayment. European Journal of Mechanics, B/Fluids 15(1):55–80

  61. Schuttelaars HM, de Swart HE (2000) Multiple morphodynamic equilibria in tidal embayments. J Geophys Res 105(C10):24,105–24,124

  62. Stanchev H, Palazov A, Stanchev M (2009) 3D GIS model for flood risk assessment of Varna Bay due to extreme sea level rise. J Coast Res SI 56:1597–1601

  63. Taillefert M, Neuhuber S, Bristow G (2007) The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochemistry 8:6

  64. Temmerman S, Bouma TJ, Van de Koppel J, van der Wal D, de Vries MB, Herman PMJ (2007) Vegetation causes channel erosion in a tidal landscape. Geology 35:631–634

  65. van der Wegen M, Wang ZB, Savenije HHG, Roelvink JA (2008) Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. J Geophys Res 113:F03001

  66. van Goor MA, Zitman TJ, Wang ZB, Stive MJF (2003) Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar Geol 202:211–227

  67. van Kreeke J, Cotter DC (1974) Tide-induced mass transport in lagoon-inlet systems. Proc Coast Eng 3:2290–2301

  68. Vila-Concejo A, Matias A, Ferreira Ó, Duarte C, Dias JMA (2002) Recent evolution of the natural inlets of a barrier island system in southern Portugal. J Coast Res SI 36:741–752

  69. Vila-Concejo A, Ferreira Ó, Morris B, Matias A, Dias JMA (2004) Lessons from inlet relocation: examples from southern Portugal. Coast Eng 51:967–990

  70. Vousdoukas M, Almeida LP, Ferreira Ó (2011) Modelling storm-induced beach morphological change in a meso-tidal, reflective beach using XBeach. J Coast Res SI 64:1916–1920

  71. Zanchettin D, traverse P, Tomasino M (2007) Observations on future sea level changes in the Venice lagoon. Hydrobiologia 577:41–53

Download references


This work is contribution to the EVREST project (PTDC/MAR-EST/1031/2014)A. R. Carrasco was supported by grant (SFRH/BPD/88485/2012). The authors acknowledge Duarte Duarte, José Jacob, and André Pacheco for the time series of measurements used to calibrate and validate the model. The LIDAR data were kindly provided by the Direção-Geral do Território.

Author information

Correspondence to Ana Rita Carrasco.

Additional information

Responsible Editor: Alejandro Orfila

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carrasco, A.R., Plomaritis, T., Reyns, J. et al. Tide circulation patterns in a coastal lagoon under sea-level rise. Ocean Dynamics 68, 1121–1139 (2018). https://doi.org/10.1007/s10236-018-1178-0

Download citation


  • Sea-level rise
  • Tidal circulation
  • Basin infilling, inlets
  • Current velocities