Ocean Dynamics

, Volume 68, Issue 4–5, pp 485–495 | Cite as

Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

  • Hui Wang
  • Kexiu Liu
  • Aimei Wang
  • Jianlong Feng
  • Wenjing Fan
  • Qiulin Liu
  • Yao Xu
  • Zengjian Zhang
Article

Abstract

Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China’s coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China’s coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China’s coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4–7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

Keywords

Sea level El Niño-Southern Oscillation Singular value decomposition Sea surface temperature 

Notes

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2017YFC1404200 and 2016YFC1401900), the National Natural Science Foundation of China (Grant No. 41706020 and No. 41406032), and the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting.

References

  1. Barth MC, Titus JG (eds) (1984) Greenhouse effect and sea level rise: a challenge for this generation. Van Nostrand Reinhold, New YorkGoogle Scholar
  2. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173CrossRefGoogle Scholar
  3. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  4. Casey KS, Adamec D (2002) Sea surface temperature and sea surface height variability in the North Pacific Ocean from 1993 to 1999. J Geophys Res 107(C8).  https://doi.org/10.1029/2001JC001060
  5. Cazenave A, Dieng H-B, Meyssignac B, von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea level rise. Nat Clim Chang 4:358–361CrossRefGoogle Scholar
  6. Chang CWJ, Hsu HH, Wu CR, Shen WJ (2008) Interannual mode of sea level in the South China Sea and the roles of Ei Niño and Ei Niño Modoki. Geophys Res Lett 35:L03601.  https://doi.org/10.1029/2007GL032562 Google Scholar
  7. Chao SY, Shaw PT, Wu SY (1996) Ei Niño modulation of the South China Sea circulation. Prog Oceanogr 38(1):51–93.  https://doi.org/10.1016/S0079-6611(96)00010-9 CrossRefGoogle Scholar
  8. Chelton DB, Davis RE (1982) Monthly mean sea-level variability along the west coast of North America. J Phys Oceanogr 12:757–784CrossRefGoogle Scholar
  9. Cheng Y, Plag H-P, Hamlington BD, Xu Q, He Y (2015) Regional sea level variability in the Bohai Sea, Yellow Sea, and East China Sea. Cont Shelf Res 111:95–107CrossRefGoogle Scholar
  10. Cheng X, Xie S-P, Du Y, Wang J, Chen X, Wang J (2016a) Interannual-to-decadal variability and trends of sea level in the South China Sea. Clim Dyn 46:3113–3126CrossRefGoogle Scholar
  11. Cheng Y, Hamlington BD, Plag HP, Xu Q (2016b) Influence of ENSO on the variation of annual sea level cycle in the South China Sea. Ocean Eng 126:343–352CrossRefGoogle Scholar
  12. Cherry S (1996) Singular value decomposition analysis and canonical correlation analysis. J Clim 9:2003–2009CrossRefGoogle Scholar
  13. Cherry S (1997) Some comments on singular value decomposition analysis. J Climate 10:1759–1761CrossRefGoogle Scholar
  14. Church JA, Woodworth P, Aarup T, Wilson WS (2010) Understanding sea-level rise and variability. Wiley, LondonCrossRefGoogle Scholar
  15. Church JA et al (2013) Climate change: the physical science basis. In: Stocker TF et al (eds) chap 13Contribution of working groupIto the fifth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, CambridgeGoogle Scholar
  16. Correa-Ramirez M, Hormazabal S (2012) MultiTaper method-singular value decomposition (MTM-SVD): spatial-frequency variability of the sea level in the southeastern Pacific. Lat Am J Aquat Res 40(4):1039–1060CrossRefGoogle Scholar
  17. Cummins PF, Lagerloef GSE, Mitchum G (2005) A regional index of northeast Pacific variability based on satellite altimeter data. Geophys Res Lett 32:L17607.  https://doi.org/10.1029/2005GL023642 CrossRefGoogle Scholar
  18. Cutter SL, Gall ANDM (2015) Sendai targets at risk. Nat Clim Chang 5(8):707–709.  https://doi.org/10.1038/nclimate2718 CrossRefGoogle Scholar
  19. Douglas BC (1997) Global sea rise: a redetermination. Surv Geophys 18(2):279–292CrossRefGoogle Scholar
  20. Enfield DB, Allen JS (1980) On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J Phys Oceanogr 10:557–578CrossRefGoogle Scholar
  21. Fang G, Chen H, Wei Z, Wang X, Li C (2006) Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decades. J Geophys Res 111:C11S16.  https://doi.org/10.1029/2005JC003276 CrossRefGoogle Scholar
  22. Halldor B, Venegas SA (1997) A manual for EOF and SVD analyses of climate data. Report No. 97-1, Centre for Climate and Global Change Research, McGill Univ., MontrealGoogle Scholar
  23. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Chang 3:802–806CrossRefGoogle Scholar
  24. Hamlington BD, Leben RR, Kim KY, Nerem RS, Atkinson LP, Thompson PR (2015) The effect of the Ei Niño-Sothern Oscillation on the U.S. regional and coastal sea level. J Geophys Res. Oceans 120:3970–3986.  https://doi.org/10.1002/2004JC010602 CrossRefGoogle Scholar
  25. Han G, Huang W (2008) Pacific decadal oscillation and sea level variability in the Bohai, Yellow, and East China Seas. J Phys Oceanogr 38:2772–2783CrossRefGoogle Scholar
  26. Han G, Huang W (2009) Low-frequency sea-level variability in the South China Sea and its relationship to ENSO. Theor Appl Climatol 97:41–52CrossRefGoogle Scholar
  27. Han W, Meehl GA, Hu A, Alexander MA, Yamagata T, Yuan D, Ishii M, Pegion P, Zheng J, Hamlington BD, Quan XW, Leben RR (2013) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dyn 43:1357–1379.  https://doi.org/10.1007/s00382-013-1951-1 CrossRefGoogle Scholar
  28. Han W, Meehl GA, Stammer D, Hu A, Hamlington B, Kenigson J, Palanisamy H, Thompson P (2017) Spatial patterns of sea level variability associated with natural internal climate modes. Surv Geophys 38:217–250CrossRefGoogle Scholar
  29. Ho CR, Zheng Q, Soong YS, Kuo NJ, Hu JH (2000) Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J Geophys Res 105(C6):13981–13990CrossRefGoogle Scholar
  30. Holgate SJ (2007) On the decadal rates of sea level change during the twentieth century. Geophy Res Lett 34(1):L01602.  https://doi.org/10.1029/2006GL028492 CrossRefGoogle Scholar
  31. Hu J, Kawamura H, Hong H, Kobashi F (2001) 3~6 months variation of sea surface height in the South China Sea and its adjacent ocean. J Oceanographt 57:69–78CrossRefGoogle Scholar
  32. Huang RH, Zhang RH, Yan BL (2001) Dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Science in China (Series D) 44:1089–1098CrossRefGoogle Scholar
  33. Huang L, Sun J, Yang YQ, Yuan YF (2013) Sea surface height (SSH) change and its relationship with wind stress in the north Pacific ocean. Oceanologia et Limnologia Sinica 44:111–119 (in Chinese with English abstract)Google Scholar
  34. Huynh HNT, Alvera-Azcárate A, Barth A, Beckers JM (2016) Reconstruction and analysis of long-term satellite-derived sea surface temperature for the South China Sea. J Oceanogr 72:707–726CrossRefGoogle Scholar
  35. Iskandar I (2009) Dynamics of intraseasonal sea level variations observed at Gan Island and sibolga. Jurnal Matematika dan sains, September 14:2Google Scholar
  36. Kennedy AJ, Griffin ML, Morey SL, Smith SR, Brien JJO (2007) Effects of Ei Niño-Sothern Oscillation on sea level anomalies along the Gulf of Mexico coast. J Geophys Res 112:C05047.  https://doi.org/10.1029/2006JC003904 CrossRefGoogle Scholar
  37. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variation during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932CrossRefGoogle Scholar
  38. Kremer HH, Le Tisser MDA, Burbridge PR, Talaue-McManus L, Rabalais NN, Parslow J et al (2004) Land-Ocean interactions in the coastal zone: science plan and implementation strategy. IGBP Report 51/IHDP Report 1860. GBP Secretariat, StockholmGoogle Scholar
  39. Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24(2):122–129.  https://doi.org/10.5670/oceanog.2011.32 CrossRefGoogle Scholar
  40. Li JC, Wang ZT, Hu JG (2000) Mean sea level variation using historic satellite altimeter data. J Wuhan Tech Univ Surv Mapp 25:343–347Google Scholar
  41. Li J, Tan W, Chen M, Zuo J, Yang Y (2016) The regional patterns of the global dynamic and steric sea level variation in twenty-first century projections. Glob Planet Chang 146:133–139CrossRefGoogle Scholar
  42. Lin CY, Ho CR, Zheng Q, Huang SJ, Kuo NJ (2011) Variability of sea surface temperature and warm pool area in the South China Sea and its relationship to the western Pacific warm pool. J Oceanogr 67:719–724.  https://doi.org/10.1007/s10872-011-0072-x CrossRefGoogle Scholar
  43. Liu X, Liu Y, Guo L, Rong Z, Gu Y, Liu Y (2010) Interannual changes of sea level in the two regions of East China Sea and different responses to ENSO. Glob Planet Chang 72:215–226CrossRefGoogle Scholar
  44. Liu Q, Feng M, Wang D (2011) ENSO-induced interannual variability in the southeastern South China Sea. J Oceanogr 67:127–133.  https://doi.org/10.1007/s10872-011-0002-y CrossRefGoogle Scholar
  45. Marcos M, Marzeion B, Dangendorf S, Slangen ABA, Palanisamy H, Fenoglio-Marc L (2017) Internal variability versus anthropogenic forcing on sea level and its components. Surv Geophys 38:329–348CrossRefGoogle Scholar
  46. Mechler R, Bouwer LM, Linnerooth-Bayer L, Hochraniner-Stigler S, Aerts JCH, Surminski S, Williges K (2014) Managing unnatural disaster risk from climate extremes. Nat Clim Chang 4(4):235–237.  https://doi.org/10.1038/nclimate2137 CrossRefGoogle Scholar
  47. Milliman JD, Broadus JM, Gable F (1989) Environmental and economic implications of rising sea level and subsiding deltas: the Nile and Bengal example. Ambio 18:340–345Google Scholar
  48. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478CrossRefGoogle Scholar
  49. Moon JH, Song YT, Lee HK (2015) PDO and ENSO modulations intensified decadal sea level variability in the tropical Pacific. J Geophys Res: Oceans 120:8229–8237.  https://doi.org/10.1002/2015JC011139 CrossRefGoogle Scholar
  50. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520CrossRefGoogle Scholar
  51. Nicholls RJ (2011) Planning for the impacts of sea level rise. Oceanography 24(2):144–157.  https://doi.org/10.5670/oceanog.2011.34 CrossRefGoogle Scholar
  52. Peng S, Fyfe J (1996) The coupled patterns between sea level pressure and sea surface temperature in the midlatitude North Atlantic. J Clim 9(8):1824–1839CrossRefGoogle Scholar
  53. Peng D, Palanisamy H, Cazenava A, Meyssignac B (2013) Interannual sea level variations in the South China Sea over 1950-2009. Mar Geod 36(2):164–182.  https://doi.org/10.1080/01490419.2013.771595 CrossRefGoogle Scholar
  54. Qiao X, Chen G (2008) A preliminary analysis on the China Sea level using 11 years’ TOPEX/Poseidon altimeter data. Marine Science 32:60–64Google Scholar
  55. Rong Z, Liu Y, Zong H, Cheng Y (2007) Interannual sea level variability in the South China Sea and its response to ENSO. GlobPlanet Change 55(4):257–272CrossRefGoogle Scholar
  56. Sasaki YN, Minobe S, Miura Y (2013) Decadal sea-level variability along the coast of Japan in response to ocean circulation changes. Journal of Geophysical Research: Oceans 119:266–275.  https://doi.org/10.1002/2013JC009327 Google Scholar
  57. Spada G, Galassi G (2012) New estimates of secular sea level rise from tide gauge data and GIA modeling. Geophys J Int 191(3):1067–1094.  https://doi.org/10.1111/j.1365-246X.2012.05663.x Google Scholar
  58. Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46CrossRefGoogle Scholar
  59. Thompson PB, Hamlinton BD, Landerer FW, Adhikai S (2016) Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys Res Lett 43(10):403–10,411.  https://doi.org/10.1002/2016GL070552 Google Scholar
  60. Venegas SA, Mysak LA, Straub DN (1997) Atmosphere-ocean coupled variability in the South Atlantic. J Clim 10(11):2904–2920CrossRefGoogle Scholar
  61. Vivier F, Kelly KA, Thompson L (1999) Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean. J Geophys Res 44:767–788Google Scholar
  62. Vousdoukas MI, Mentaschi L, Voukouvalas E, Verlaan M, Feyen L (2017) Extreme sea levels on the rise along Europe’s coasts. Earth’s Furture 5:304–323.  https://doi.org/10.1002/2016EF000505 CrossRefGoogle Scholar
  63. Wang Y, Groten E (2001) Prominent periodic oscillatory signal detection of sea level variability over China seas from T/P altimetry. Mar Geod 24(85–97):2001Google Scholar
  64. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect east Asian climate? J Clim 13(9):1517–1536CrossRefGoogle Scholar
  65. Wang C, Wang W, Wang D, Wang Q (2006) Interannual variability of the South China Sea associated with Ei Niño. J Geophys Res 111:C030203Google Scholar
  66. Wang Hui, Liu Kexiu, Fan Wenjing, et al. (2013) Data uniformity revision and variations of the sea level of the western Bohai Sea Marine Science Bulletin, 2013, 32(3):256-264. (Chinese with English abstract)Google Scholar
  67. Wang DX, Xie Q, Du Y, Wang WQ, Chen J (2002) The 1997-1998 warm event in the South China Sea. Chin Sci Bull 47:1221–1227Google Scholar
  68. Warrick RA, Barrow EM, Wigley TML (eds) (1993) Climate and sea level change: observation, projection, implications. Cambridge University Press, CambridgeGoogle Scholar
  69. Wu R, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16(22):3742–3758CrossRefGoogle Scholar
  70. Wu CR, Chang CWJ (2005) Interannual variability of the South China Sea in a data assimilation model. Geophys Res Lett 32:L17611.  https://doi.org/10.1029/2005GL023798
  71. Wu LC, Kao CC, Hsu TW, Wang YF, Wang JH (2012) Spatial and temporal features of regional variations in mean sea level around Taiwan. Open J Mar Sci 2:58–65CrossRefGoogle Scholar
  72. Wu R, Chen W, Wang G, Hu K (2014) Relative contribution of ENSO and east Asian winter monsoon to the South China Sea SST anomalies during ENSO decaying years. J Geophys Res Atmos 119(9):5046–5064.  https://doi.org/10.1002/2013JD021095 CrossRefGoogle Scholar
  73. Xu FH, Oey LY (2015) Seasonal SSH variability of the northern South China Sea. J Phys Oceanogr 45:1595–1609.  https://doi.org/10.1175/JPO-D-14-0193.1 CrossRefGoogle Scholar
  74. Zhang SW, Du L, Chang YT, Li J (2012) Interannual and decadal variation of sea level in the East China Sea. Proceedings of the 22nd international offshore and polar engineering conference (ISOPE2012), Greece, Rhodes, 17-22 June 2012. Vol 3:693–700Google Scholar
  75. Zhang S, Du L, Wang H, Jiang H (2014) Regional sea level variation on interannual timescale in the East China Sea. Int J Geosci 05:1405–1414CrossRefGoogle Scholar
  76. Zheng W (1999) Sea-level rates distribution and variations of long-period constituent in China’s coast. Haiyang Xuebao 21(3):65–74 (Chinese with English abstract)Google Scholar
  77. Zhou J, Li P, Yu H (2012) Characteristics and mechanisms of sea surface height in the South China Sea. Glob Planet Chang 2012(88):20–31CrossRefGoogle Scholar
  78. Zhou W, Wang X, Zhou TJ, Li C, Chan JCL (2007) Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteorog Atmos Phys 98:283–293CrossRefGoogle Scholar
  79. Zhuang W, Qiu B, Du Y (2013) Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine archipelago. J Geophys Res Oceans 118:6759–6773.  https://doi.org/10.1002/2013JC009376 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Wang
    • 1
  • Kexiu Liu
    • 1
  • Aimei Wang
    • 1
  • Jianlong Feng
    • 1
  • Wenjing Fan
    • 1
  • Qiulin Liu
    • 1
  • Yao Xu
    • 2
  • Zengjian Zhang
    • 1
  1. 1.National Marine Data and Information ServiceTianjinChina
  2. 2.Hangzhou Normal UniversityHangzhouChina

Personalised recommendations