Ocean Dynamics

, Volume 68, Issue 2, pp 255–272 | Cite as

Extreme storm surge modelling in the North Sea

The role of the sea state, forcing frequency and spatial forcing resolution
  • Nina RidderEmail author
  • Hylke de Vries
  • Sybren Drijfhout
  • Henk van den Brink
  • Erik van Meijgaard
  • Hans de Vries


This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter (α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.


Storm surge Modelling Coastal water level Extreme events Wind stress North Sea 



The authors would like to thank Rijkswaterstaat for providing the observational data and three anonymous reviewers for their helpful comments.

Funding information

This study was funded by the Netherlands Organisation for Scientific Research (NWO) as part of the project “Impacted by Coincident Weather Extremes” (ICOWEX; grant number 869.15.017).

Supplementary material

10236_2018_1133_MOESM1_ESM.pdf (5.9 mb)
(PDF 5.89 MB)


  1. Ardhuin F (2016) Special project progress report—improvement of wind stress parameterization in coupled wave-atmospheric models. Tech. Rep. June, ECMWFGoogle Scholar
  2. Batstone C, Lawless M, Tawn J, Horsburgh K, Blackman D, McMillan A, Worth D, Laeger S, Hunt T (2013) A UK best-practice approach for extreme sea-level analysis along complex topographic coastlines. Ocean Eng 71:28–39. CrossRefGoogle Scholar
  3. Berrisford P, Dee D, Poli P, Brugge R, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S, Simmons A (2011) The ERA-interim archive. ERA Report Series 1(1):1–23Google Scholar
  4. Bode L, Hardy TA (1997) Progress and recent developments in storm surge modeling. J Hydraul Eng 123 (4):315–331. CrossRefGoogle Scholar
  5. Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81:639. CrossRefGoogle Scholar
  6. Coles S (2001) An introduction to statistical modeling of extreme values, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  7. Dangendorf S, Arns A, Pinto J G, Ludwig P, Jensen J (2016) The exceptional influence of storm “Xaver” on design water levels in the German Bight. Environ Res Lett 11(April):1–10. Google Scholar
  8. de Bruijn C, van Meijgaard E (2005) Verification of hirlam with ecmwf physics compared with hirlam reference versions. Tech. Rep. 63Google Scholar
  9. de Vries H (1991) The implementation of the WAQUA/CSM-16 model for real time storm surge forecasting. Tech. Rep TR-131, KNMI, De BiltGoogle Scholar
  10. Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Holm E V, Isaksen L, Kollberg P, Koehler M, Matricardi M, Mcnally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thepaut J N, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. CrossRefGoogle Scholar
  11. Donelan M, Dobson F, Smith SD, Anderson RJ (1993) The dependence of sea surface roughness on wave development.<1905:CODOSS>2.0.CO;2
  12. Duran-Matute M, Gerkema T, De Boer G J, Nauw J J, Gräwe U (2014) Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study. Ocean Sci 10(4):611–632. CrossRefGoogle Scholar
  13. ECMWF (2015) Part VII: ECMWF Wave model. Tech. Rep. June, ECMWFGoogle Scholar
  14. Flather R A (2000) Existing operational oceanography. Coast Eng 41(1-3):13–40. CrossRefGoogle Scholar
  15. Gerritsen H, de Vries H, Philippart M (1995) The dutch continental shelf model. In: Quantitative skill assessment for coastal ocean models, pp 425–467Google Scholar
  16. Guan C, Xie L (2004) On the linear parameterization of drag coefficient over sea surface. J Phys Oceanogr 34:2847–2851. CrossRefGoogle Scholar
  17. Gumbel E J (1958) Statistics of extremes 1958. Columbia University Press, New YorkGoogle Scholar
  18. Haigh I D, Wadey M P, Gallop S L, Loehr H, Nicholls R J, Horsburgh K, Brown J M, Bradshaw E (2015) A user-friendly database of coastal flooding in the United Kingdom from 1915–2014. Scientific Data 1–13.
  19. Horsburgh K, Wilson C (2007) Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J Geophys Res Oceans 112(8):1–13. Google Scholar
  20. Janssen P (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting.<1631:QLTOWW>2.0.CO;2
  21. Janssen P, Beljaars A, Simmons A, Viterbo P (1992) The determination of the surface stress in an atmospheric model. Mon Weather Rev 120(12):2977–2985CrossRefGoogle Scholar
  22. Maat N, Kraan C, Oost W A (1991) The roughness of wind waves. Bound-Layer Meteorol 54(1-2):89–103. CrossRefGoogle Scholar
  23. Mastenbroek C, Burgers G, Janssen P (1993) The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer.<1856:TDCOAW>2.0.CO;2
  24. Onvlee J R N (1993) The performance of drag relations in the WAQUA storm surge model. Tech rep., KNMI, de biltGoogle Scholar
  25. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including werror estimates in MATLAB using t_TIDE. Comput Geosci 28(8):929–937. CrossRefGoogle Scholar
  26. Postma H (1950) The distribution of temperature and salinity in the wadden sea. van het Koninkijk Nederlandsch Aardrijkskundig Genootschap 67:34–42Google Scholar
  27. Pugh D, Woodworth P (2015) Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes. Cambridge University Press 56(3):394–394. Google Scholar
  28. Pugh D T (1996) Tides, surges and mean sea-level (reprinted with corrections), vol 5. Wiley, New York. Google Scholar
  29. Ridderinkhof H (1988) Tidal and residual flows in the Western Dutch Wadden Sea I: numerical model results. Neth J Sea Res 22(1):1–21. CrossRefGoogle Scholar
  30. Smith S D, Banke E G (1975) Variation of the sea surface drag coefficient with wind speed. Q J R Meteorol Soc 101(429):665–673. CrossRefGoogle Scholar
  31. Sterl A, van den Brink H, de Vries H, Haarsma R, van Meijgaard E (2009) An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate. Ocean Sci 5(3):369–378. CrossRefGoogle Scholar
  32. van den Brink H W, Können G P, Opsteegh J D (2004) Statistics of extreme synoptic-scale wind speeds in ensemble simulations of current and future climate. J Clim 17(23):4564–4574. CrossRefGoogle Scholar
  33. van Meijgaard E, van Ulft LH, Bosveld FC, Lenderink G, Siebesma P (2008) The KNMI regional atmospheric climate model RACMO version 2.1. Tech. Rep. TR-302, KNMIGoogle Scholar
  34. van Meijgaard E, van Ulft L H, Lenderink G, de Roode S R, Timmermans R M A (2012) Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe. Tech. rep., National Research Programme Climate Changes Spatial PlanningGoogle Scholar
  35. Verlaan M, Zijderveld A, de Vries H, Kroos J (2005) Operational storm surge forecasting in the Netherlands: developments in the last decade. Philos Trans R Soc A Math Phys Eng Sci 363(1831):1441–1453. CrossRefGoogle Scholar
  36. Zimmerman J T F (1976a) Mixing and flushing of tidal embayments in the western Dutch Wadden Sea part I: distribution of salinity and calculation of mixing time scales. Neth J Sea Res 10(2):149–191.
  37. Zimmerman J T F (1976b) Mixing and flushing of tidal embayments in the Western Dutch Wadden Sea, part II: analysis of mixing processes. Neth J Sea Res 10(4):397–439.
  38. Zweers N C, Makin V K, de Vries J W, Burgers G (2010) A sea drag relation for hurricane wind speeds. Geophys Res Lett 37(21):L21,811. CrossRefGoogle Scholar
  39. Zweers N C, Makin V K, de Vries J W, Burgers G (2012) On the influence of changes in the drag relation on surface wind speeds and storm surge forecasts. Nat Hazards 62(2):207–219. CrossRefGoogle Scholar
  40. Zweers N C, Makin V K, de Vries J W, Kudryavtsev V N (2015) The impact of spray-mediated enhanced enthalpy and reduced drag coefficients in the modelling of tropical cyclones. Bound-Layer Meteorol 155(3):501–514. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Koninklijk Nederlands Meteorologisch InstituutMinisterie van Infrastructuur en MilieuDe BiltThe Netherlands

Personalised recommendations