Advertisement

Ocean Dynamics

, Volume 68, Issue 1, pp 131–151 | Cite as

The Wadden Sea in transition - consequences of sea level rise

  • Johannes BechererEmail author
  • Jacobus Hofstede
  • Ulf Gräwe
  • Kaveh Purkiani
  • Elisabeth Schulz
  • Hans Burchard
Article
Part of the following topical collections:
  1. Topical Collection on the 18th conference on Physics of Estuaries and Coastal Seas (PECS), Scheveningen, Netherlands, 9-14 October 2016

Abstract

The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010–2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.

Keywords

Sea level rise Morphodynamic simulation Wadden Sea 

Notes

Acknowledgements

We want to thank Mick van der Wegen and two anonymous reviewers for their thoughtful comments, which helped to substantially improve this manuscript. This study was conducted in the context of a trilateral cooperation among German, Dutch, and Danish coastal administrations on the future morphological development of the Wadden Sea under climate change. The authors want to thank the partners from Deltares (NL) and Kystdirektoratet (DK) for constructive discussions. The project SH-TREND was financed by the Schleswig-Holstein Ministry of Energy, Agriculture, the Environment and Rural Areas. We are grateful to Knut Klingbeil for the code development and maintenance of GETM. Supercomputing power was provided by the North-German Supercomputing Alliance (HLRN). The work of Elisabeth Schulz was supported by the project MOREWACC (Morphodynamic response of the Wadden Sea to climate change) funded by the German Research Foundation as BU 1199/21-1 under the umbrella of the Priority Programme SPP 1889 on Regional Sea Level Change and Society.

References

  1. Backhaus J, Hartke D, Hübner U, Lohse H, Müller A (1998) Hydrographie und Klima im Lister Tidebecken/hydrography and climate in the list Tidal Basin. In: Gätje C, Reise K (eds) Ökosystem Wattenmeer: Austausch-, Transport-und Stoffumwandlungsprozesse/The Wadden Sea Ecosystem: exchange, transport and transformation processes, chapter 1.1.3. Springer, Berlin, pp 39–54Google Scholar
  2. Becherer J, Burchard H, Flöser G, Mohrholz V, Umlauf L (2011) Evidence of tidal straining in well-mixed channel flow from micro-structure observations. Geophys Res Lett 38:L17611.  https://doi.org/10.1029/2011GL049005 CrossRefGoogle Scholar
  3. Becherer J, Gräwe U, Purkiani K, Schulz E, Burchard H (2015a) Simulation der morphologischen Entwicklung in tidalen Systemen der Westküste von Schleswig-Holstein. Final report of research cooperation among IOW and MELUR-SH, WarnemündeGoogle Scholar
  4. Becherer J, Stacey MT, Umlauf L, Burchard H (2015b) Lateral circulation generates flood tide stratification and estuarine exchange flow in a curved tidal inlet. J Phys Oceanogr 45(3):638–656CrossRefGoogle Scholar
  5. Becherer J, Flöser G, Umlauf L, Burchard H (2016) Estuarine circulation versus tidal pumping: sediment transport in a well-mixed tidal inlet. J Geophys Res 121(8):6251–6270CrossRefGoogle Scholar
  6. Borsje BW, de Vries MB, Hulscher SJMH, de Boer GJ (2008) Modeling large scale cohesive sediment transport affected by small scale biological activity. Estuar Coast Shelf Sci 78:468–480CrossRefGoogle Scholar
  7. Bruggeman J, Bolding K (2014) A general framework for aquatic biogeochemical models. Environ Model Softw 61:249–265.  https://doi.org/10.1016/j.envsoft.2014.04.002 CrossRefGoogle Scholar
  8. Burchard H, Bolding K (2002) GETM—a general estuarine transport model. Scientific documentation. Technical Report EUR 20253 EN, European CommissionGoogle Scholar
  9. Burchard H, Flöser G, Staneva JV, Riethmüller R, Badewien T (2008) Impact of density gradients on net sediment transport into the Wadden Sea. J Phys Oceanogr 38:566–587CrossRefGoogle Scholar
  10. Burchard H, Hetland RD, Schulz E, Schuttelaars HM (2011) Drivers of residual estuarine circulation in tidally energetic estuaries: straight and irrotational channels with parabolic cross section. J Phys Oceanogr 41(3):548–570CrossRefGoogle Scholar
  11. Burchard H, Schuttelaars HM, Rockwell Geyer W (2013) Residual sediment fluxes in weakly-to-periodically stratified estuaries and tidal inlets. J Phys Oceanogr 43(9):1841–1861CrossRefGoogle Scholar
  12. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  13. CPSL (2001) Final Report of the trilateral working group on coastal protection and sea level rise - CPSL. Wadden Sea Ecosyst 13:1–63Google Scholar
  14. CPSL (2005) Coastal protection and sea level rise—solutions for coastal protection in the Wadden Sea region. Wadden Sea Ecosyst 21:1–47Google Scholar
  15. CPSL (2010) CPSL Third Report—the role of spatial planning and sediment in coastal risk management. Wadden Sea Ecosyst 28:1–51Google Scholar
  16. CWSS (2008) Nomination of the Dutch-German Wadden Sea as World Heritage Site. Common Wadden Sea SecretariatGoogle Scholar
  17. Dam G, Wegen M, Labeur RJ, Roelvink D (2016) Modeling centuries of estuarine morphodynamics in the western scheldt estuary. Geophys Res Lett 43(8):3839–3847CrossRefGoogle Scholar
  18. Dissanayake DMPK, Ranasinghe R, Roelvink JA (2012) The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim Change 113(2):253–276.  https://doi.org/10.1007/s10584-012-0402-z CrossRefGoogle Scholar
  19. Duran-Matute M, Theo Gerkema GJ, de Boer J, Nauw J, Gräwe U (2014) Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study. Ocean Sci 10(4):611–632CrossRefGoogle Scholar
  20. Einstein HA, Krone RB (1962) Experiments to determine modes of cohesive transport in salt water. J Geophys Res 67:1451–1461CrossRefGoogle Scholar
  21. Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929–932CrossRefGoogle Scholar
  22. Engelund FA, Hansen E (1972) A monograph on sediment transport. Teknisk Forlag, CopenhagenGoogle Scholar
  23. Gräwe U, Burchard H, Müller M, Schuttelaars HM (2014) Seasonal variability in M2 and M4 tidal constituents and its implications for the coastal residual sediment transport. Geophys Res Lett 51(14):5563–5570CrossRefGoogle Scholar
  24. Gräwe U, Holtermann P, Klingbeil K, Burchard H (2015) Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Modell 92:56–68CrossRefGoogle Scholar
  25. Gräwe U, Flöser G, Gerkema T, Duran-Matute M, Badewien T H, Schulz E, Burchard H (2016) A numerical model for the entire wadden sea: skill assessment and analysis of hydrodynamics. J Geophys Res 121(7):5231–5251CrossRefGoogle Scholar
  26. Hansen DV, Rattray M (1965) Gravitational circulation in straits and estuaries. J Mar Res 23:104–122Google Scholar
  27. Herrling G, Winter C (2014) Morphological and sedimentological response of a mixed-energy barrier island tidal inlet to storm and fair-weather conditions. Earth Surf Dyn 2:363–382CrossRefGoogle Scholar
  28. Hibma A, Schuttelaars HM, Wang ZB (2003) Comparison of longitudinal equilibrium profiles of estuaries in idealized and process-based models. Ocean Dyn 53(3):252–269CrossRefGoogle Scholar
  29. Hofstede JLA (2007) Entwicklung des Meeresspiegels und der Sturmfluten: Ist der anthropogene Klimawandel bereits sichtbar. Coastline Rep 9:139–148Google Scholar
  30. Hofstede JLA, Stock M (2016) Climate change adaptation in the Schleswig-Holstein sector of the Wadden Sea: an integrated state governmental strategy. J Coast Conserv, 1–9. ISSN 1874-7841.  https://doi.org/10.1007/s11852-016-0433-0
  31. Hofstede JLA, Becherer J, Burchard H (2016) Are Wadden Sea tidal systems with a higher tidal range more resilient against sea level rise? J Coast Conserv 1–8. ISSN 1874-7841.  https://doi.org/10.1007/s11852-016-0469-1
  32. Jay DA, Musiak JD (1994) Particle trapping in estuarine tidal flows. J Geophys Res 99:445–461CrossRefGoogle Scholar
  33. Krone RB (1963) A study of rheologic properties of estuarial sediments. Technical report, DTIC DocumentGoogle Scholar
  34. Lerczak JA, Geyer RW (2004) Modeling the lateral circulation in straight, stratified estuaries. J Phys Oceanogr 34(6):1410–1428CrossRefGoogle Scholar
  35. Lesser GR, Roelvink JA, Van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8):883–915CrossRefGoogle Scholar
  36. Mengel M, Levermann A, Frieler K, Robinson A, Marzeion B, Winkelmann R (2016) Future sea level rise constrained by observations and long-term commitment. Proc Nat Acad Sci 113(10):2597–2602.  https://doi.org/10.1073/pnas.1500515113 CrossRefGoogle Scholar
  37. Moghimi S, Klingbeil K, Gräwe U, Burchard H (2013) A direct comparison of a depth-dependent radiation stress formulation and a Vortex force formulation within a three-dimensional coastal ocean model. Ocean Modell 70:132–144CrossRefGoogle Scholar
  38. Müller M (2011) Rapid change in semi-diurnal tides in the North Atlantic since 1980. Geophys Res Let 38(11)Google Scholar
  39. Purkiani K, Becherer J, Flöser G, Gräwe U, Mohrholz V, Schuttelaars HM, Burchard H (2015) Numerical analysis of stratification and destratification processes in a tidally energetic inlet with an ebb tidal delta. J Geophys Res 120(1):225–243CrossRefGoogle Scholar
  40. Purkiani K, Becherer J, Klingbeil K, Burchard H (2016) Wind-induced variability of estuarine circulation in a tidally energetic inlet with curvature. J Geophys Res 121:326–3277CrossRefGoogle Scholar
  41. Roelvink JAA (2006) Coastal morphodynamic evolution techniques. Coast Eng 53(2–3):277–287CrossRefGoogle Scholar
  42. Rouse H (1938) Nomogram for the settling velocity of spheres. National Research Council, Division of Geology and GeographyGoogle Scholar
  43. Sassi M, Duran-Matute M, van Kessel T, Gerkema T (2015) Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system: the Dutch Wadden Sea. Ocean Dyn 65:1321–1333CrossRefGoogle Scholar
  44. Schulz E, Schuttelaars HM, Gräwe U, Burchard H (2015) Impact of the depth-to-width ratio of periodically stratified tidal channels on the estuarine circulation. J Phys Oceanogr 45(8):2048–2069CrossRefGoogle Scholar
  45. Schuttelaars HM, de Swart HE (1999) Initial formation of channels and shoals in a short tidal embayment. J Fluid Mech 386:15–42CrossRefGoogle Scholar
  46. Schuttelaars HM, de Swart HE (2000) Multiple morphodynamic equilibria in tidal embayments. J Geophys Res 105(C10):24105CrossRefGoogle Scholar
  47. Scully ME, Rockwell GW, Lerczak JA (2009) The influence of lateral advection on the residual estuarine circulation: a numerical modeling study of the hudson river estuary. J Phys Oceanogr 39(1):107–124CrossRefGoogle Scholar
  48. Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Thomas Telford, LondonGoogle Scholar
  49. Stanev EV, Wolff J-O, Burchard H, Bolding K, Flöser G (2003) On the circulation in the {East Frisian Wadden Sea}: numercial modeling and data analysis. Ocean Dyn 53(1):27–51CrossRefGoogle Scholar
  50. Stive MJF, Capobianco M, Wang ZB, Ruol P, Buijsman MC (1998) Morphodynamics of a tidal lagoon and the adjacent coast. In: Physics of estuaries and coastal seas, pp 397–407Google Scholar
  51. Ter Brake MC, Schuttelaars HM (2010) Modeling equilibrium bed profiles of short tidal embayments: on the effect of the vertical distribution of suspended sediment and the influence of the boundary conditions. Ocean Dyn 60(2):183–204CrossRefGoogle Scholar
  52. van der Wegen M (2013) Numerical modeling of the impact of sea level rise on tidal basin morphodynamics. J Geophys Res Earth Surf 118(2):447–460CrossRefGoogle Scholar
  53. van der Wegen M, Roelvink J A (2008) Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J Geophys Res 113(C3):C03016Google Scholar
  54. van Goor MA, Zitma TJ, Stive MJF (2003) Impact of sea level rise on the morphological equilibrium state of tidal inlets. Mar Geol 201:211–227CrossRefGoogle Scholar
  55. van Maanen B, Coco G, Bryan KR, Friedrichs CT (2013) Modeling the morphodynamic response of tidal embayments to sea-level rise. Ocean Dyn 63(11–12):1249–1262CrossRefGoogle Scholar
  56. Walton TL, Adams WD (1976) Capacity of inlet outer bars to store sand. In: Coastal engineering proceedings, vol 1 (15)Google Scholar
  57. Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, De Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manag 68:39–57. ISSN 0964-5691.  https://doi.org/10.1016/j.ocecoaman.2011.12.022. Special Issue on the Wadden Sea RegionCrossRefGoogle Scholar
  58. Wang ZB, Townend IH, Stive MJF (2014) Modelling of morphological response of tidal basins to sea-level rise revisited. In: Proceedings of the 17th physics of estuaries and coastal seas (PECS) conference, Porto de Galinhas, Pernambuco, BrazilGoogle Scholar
  59. Young IR, Verhagen LA (1996) The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast Eng 29(1–2):47–78CrossRefGoogle Scholar
  60. Zhou Z, Coco G, Townend I, Olabarrieta M, Van Der Wegen M, Gong Z, D’Alpaos A, Gao S, Jaffe B E, Gelfenbaum G et al (2017) Is “morphodynamic equilibrium” an oxymoron? Earth-Sci Rev 165:257–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of Earth, Ocean, and Atmospheric Sciences (CEOAS)Oregon State UniversityCorvallisUSA
  2. 2.Division Flood Defense, Coastal Protection and HarborsSchleswig-Holstein Ministry for Energy Transition, Agriculture, Environment, Nature and DigitalizationKielGermany
  3. 3.Leibniz Institute for Baltic Sea Research Warnemünde (IOW)RostockGermany
  4. 4.Center for Marine Environmental SciencesMARUMBremenGermany

Personalised recommendations