Ocean Dynamics

, Volume 67, Issue 9, pp 1217–1230 | Cite as

Regional turbulence patterns driven by meso- and submesoscale processes in the Caribbean Sea

Article
Part of the following topical collections:
  1. Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016

Abstract

The surface ocean circulation in the Caribbean Sea is characterized by the interaction between anticyclonic eddies and the Caribbean Upwelling System (CUS). These interactions lead to instabilities that modulate the transfer of kinetic energy up- or down-cascade. The interaction of North Brazil Current rings with the islands leads to the formation of submesoscale vorticity filaments leeward of the Lesser Antilles, thus transferring kinetic energy from large to small scales. Within the Caribbean, the upper ocean dynamic ranges from large-scale currents to coastal upwelling filaments and allow the vertical exchange of physical properties and supply KE to larger scales. In this study, we use a regional model with different spatial resolutions (6, 3, and 1 km), focusing on the Guajira Peninsula and the Lesser Antilles in the Caribbean Sea, in order to evaluate the impact of submesoscale processes on the regional KE energy cascade. Ageostrophic velocities emerge as the Rossby number becomes O(1). As model resolution is increased submesoscale motions are more energetic, as seen by the flatter KE spectra when compared to the lower resolution run. KE injection at the large scales is greater in the Guajira region than in the others regions, being more effectively transferred to smaller scales, thus showing that submesoscale dynamics is key in modulating eddy kinetic energy and the energy cascade within the Caribbean Sea.

Keywords

Submesoscale dynamics Kinetic energy cascade Caribbean Sea 

Notes

Acknowledgements

We would like to thank Xavier Capet for his invaluable help and insightful discussions that contributed greatly to this work. We thank Cesar B. Rocha (Scripps) for comments provided on an earlier version of the manuscript. This work was part of a master thesis that was supported by the scholarship that was supported by the Coordenacao de Aperfeicoamento de Nivel Superior (CAPES), Brazil, through a cooperation with OAS and the COIMBRA group. PHRC acknowledges support from CNPq (process: 306971/2016-0, 458583/2013-8).

References

  1. Ca Andrade, Barton ED (2005) The Guajira upwelling system. Cont Shelf Res 25(9):1003–1022. doi: 10.1016/j.csr.2004.12.012 CrossRefGoogle Scholar
  2. Athiė G, Candela J, Ochoa J, Sheinbaum J (2012) Impact of Caribbean cyclones on the detachment of loop current anticyclones. J Geophys Res Oceans 117(3):1–16. doi: 10.1029/2011JC007090 Google Scholar
  3. Barkan R, Winters KB, Llewellyn Smith SG (2015) Energy cascades and loss of balance in a reentrant channel forced by wind stress and buoyancy fluxes. J Phys Oceanogr 45:272–293. doi: 10.1175/JPO-D-14-0068.1 CrossRefGoogle Scholar
  4. Callies J, Ferrari R (2013) Interpreting energy and tracer spectra of upper-ocean turbulence in the Submesoscale range (1–200 km). J Phys Oceanogr 43(11):2456–2474. doi: 10.1175/JPO-D-13-063.1 CrossRefGoogle Scholar
  5. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin aF (2008a) Mesoscale to submesoscale transition in the california current system. Part II: Frontal processes. J Phys Oceanogr 38(1):44–64. doi: 10.1175/2007JPO3671.1, ArXiv:http://arXiv.org/abs/1003.3921v1
  6. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008b) Mesoscale to submesoscale transition in the california current system. Part III: Energy balance and flux. J Phys Oceanogr 38(10):2256–2269. doi: 10.1175/2008JPO3810.1
  7. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA), pp 2999–3017. doi: 10.1175/2007MWR1978.1
  8. Chelton DB, Deszoeke RA, Schlax M, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic rossby radius of deformation (1984)Google Scholar
  9. Fox-Kemper B, Ferrari R (2008) Parameterization of mixed layer eddies. Part II: Prognosis and impact. J Phys Oceanogr 38:1166–1179. doi: 10.1175/2007JPO3788.1 CrossRefGoogle Scholar
  10. Fratantoni DM, Richardson PL (2006) The evolution and demise of North Brazil current rings*. J Phys Oceanogr 36(7):1241–1264. doi: 10.1175/JPO2907.1 CrossRefGoogle Scholar
  11. Johns WE, Townsend TL, Fratantoni DM, Wilson W (2002) On the Atlantic inflow to the Caribbean Sea. Deep-Sea Res I Oceanogr Res Pap 49(2):211–243. doi: 10.1016/S0967-0637(01)00041-3 CrossRefGoogle Scholar
  12. Jouanno J, Sheinbaum J (2013) Heat balance and eddies in the caribbean upwelling system. J Phys Oceanogr 43(5):1004–1014. doi: 10.1175/JPO-D-12-0140.1 CrossRefGoogle Scholar
  13. Jouanno J, Sheinbaum J, Barnier B, Molines JM (2009) The mesoscale variability in the Caribbean Sea. Part II: Energy sources. Ocean Model 26(3-4):226–239. doi: 10.1016/j.ocemod.2008.10.006 CrossRefGoogle Scholar
  14. Jouanno J, Sheinbaum J, Barnier B, Molines JM, Candela J (2012) Seasonal and interannual modulation of the eddy kinetic energy in the caribbean sea. J Phys Oceanogr 42(11):2041–2055. doi: 10.1175/JPO-D-12-048.1 CrossRefGoogle Scholar
  15. Klein P, Hua BL, Lapeyre G, Capet X, Gentil SL, Sasaki H (2008) Upper ocean turbulence from high resolution 3D simulations. J Phys Oceanogr 38(8):1748–1763. doi: 10.1175/2007JPO3773.1 CrossRefGoogle Scholar
  16. Kowalik Z, Murty TS (1993) Numerical modeling of ocean dynamics pp 481Google Scholar
  17. Marchesiello P, Capet X, Menkes C, Kennan SC (2011) Submesoscale dynamics in tropical instability waves. Ocean Model 39(1-2):31–46. doi: 10.1016/j.ocemod.2011.04.011 CrossRefGoogle Scholar
  18. Oey LY (2003) Effects of winds and Caribbean eddies on the frequency of loop current eddy shedding: A numerical model study. J Geophys Res 108(C10):1–25. doi: 10.1029/2002JC001698 CrossRefGoogle Scholar
  19. Penven P, Debreu L, Marchesiello P, McWilliams JC (2006) Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Model 12(1-2):157–187. doi: 10.1016/j.ocemod.2005.05.002 CrossRefGoogle Scholar
  20. Richardson PL (2005) Caribbean current and eddies as observed by surface drifters. Deep-Sea Res II Top Stud Oceanogr 52(3-4):429–463. doi: 10.1016/j.dsr2.2004.11.001 CrossRefGoogle Scholar
  21. Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data, no 1989, pp 2379–2413. doi: 10.1175/2008JPO3881.1
  22. Rueda-Roa DT, Muller-Karger FE (2013) The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep-Sea Res I Oceanogr Res Pap 78:102–114. doi: 10.1016/j.dsr.2013.04.008 CrossRefGoogle Scholar
  23. Salmon R (1980) Baroclinic instability and geostrophic turbulence. J Geophys Astrophys Fluid Dyn 15 (1):167–211. doi: 10.1080/03091928008241178 CrossRefGoogle Scholar
  24. Scott RB, Wang F (2005) Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J Phys Oceanogr 35:1650–1666. doi: 10.1175/JPO2771.1 CrossRefGoogle Scholar
  25. Shchepetkin AF, McWilliams JC (1998) Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon Weather Rev 126(6):1541–1580. doi: 10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2 CrossRefGoogle Scholar
  26. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404. doi: 10.1016/j.ocemod.2004.08.002 CrossRefGoogle Scholar
  27. Shcherbina AY, D’Asaro EA, Lee CM, Klymak JM, Molemaker MJ, McWilliams JC (2013) Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys Res Lett 40(17):4706–4711. doi: 10.1002/grl.50919 CrossRefGoogle Scholar
  28. Simmons H, Nof D (2002) The squeezing of eddies through gaps. J Phys Oceanogr (1993):314–335Google Scholar
  29. Thomas LN, Tandon A, Mahadevan A (2013) Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime pp 17–38. doi: 10.1029/177GM04
  30. Vallis GK (2006) Atmospheric and oceanic fluid dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Wang C, Enfield D, Lee S, Landsea C (2006) Influences of the Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J Clim pp 3011–3028Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratório de Dinâmica e Modelagem Oceânica (DinaMO), Instituto de OceanografíaUniversidade Federal do Rio Grande FURGRio GrandeBrasil
  2. 2.Departamento de Oceanografía FísicaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico

Personalised recommendations