Advertisement

Ocean Dynamics

, Volume 67, Issue 9, pp 1119–1136 | Cite as

Water intrusions and particle signatures in the Black Sea: a Biogeochemical-Argo float investigation

  • Emil Vassilev Stanev
  • Sebastian Grayek
  • Hervé Claustre
  • Chaterine  Schmechtig
  • Antoine Poteau
Article

Abstract

Continuous observations during 3 years with a vertical resolution of 1 dbar from two Bio-Argo floats in the Black Sea that were equipped with oxygen optodes, chlorophyll fluorometers, and backscattering sensors are analyzed. The particle backscattering coefficient, b bp provides a proxy for the concentration of suspended particles. The observations clearly identify thermal and b bp intrusions down to ~700–800 m in the Bosporus inflow area. In this area, b bp is more than five times larger than elsewhere, which could indicate bacterial abundance and possible biological involvement in the precipitation of Mn-containing particles. The b bp anomalies become much shallower than the temperature anomalies with increasing distance to the east of the strait. Their maxima are located between the onset of the suboxic zone and the upper part of the anoxic layer. Unlike well-known intrusions that are caused by inflow, open ocean intrusions are shallower and often characterized by multiple layers of backscatter maxima with thicknesses of only 15–20 m. The ratio between backscattering coefficients measured at two wavelengths, which gives a proxy for particle size, shows that the relative amount of larger size particles in the anoxic layer increases with depth. The particle concentrations and their size distribution display different vertical variability, which indicates the complex transformation of biological matter. The lower concentration of particles and lower chlorophyll-a during the extremely warm 2016 reveals an overall positive correlation between the two properties. The trends in the particle backscattering coefficient in the suboxic zone during 2013–2016 could indirectly reveal a biogeochemical response to temperature changes.

Keywords

Bio-optical study of Black Sea Biogeochemical response to intrusions Particle size distribution 

Notes

Acknowledgments

We are grateful to V. Slabakova for the work that was performed during the deployment of the floats and to P.M. Poulain for coordinating the Argo activities in the Black Sea. We are grateful to J. Murray for his useful suggestions on improving the paper. EVS acknowledges support from the EC grant 312642 and Hervé Claustre from the European Research Council for the Remotely Sensed Biogeochemical Cycles in the Ocean (remOcean) project (grant agreement 246777). Data that support the analysis and conclusions can be found at http://www.ifremer.fr/co-argoFloats/float?detail=false&ocean=A&lang=en&techChart=false&ptfCode=7900591 and http://www.ifremer.fr/co-argoFloats/float?detail=false&ocean=A&lang=en&techChart=false&ptfCode=7900592.

References

  1. Anderson GC (1969) Subsurface chlorophyll maximum in the Northeast Pacific Ocean. Limnol Oceanogr 14(3):386–391CrossRefGoogle Scholar
  2. Balch WM, Drapeau D, Fritz J, Bowler B, Nolan J (2001) Optical backscattering in the Arabian Sea-continuous underway measurements of particulate inorganic and organic carbon. Deep Sea Research I 48:2423–2452CrossRefGoogle Scholar
  3. Blatov, A. S., N. P. Bulgakov, V. A. Ivanov, A. N. Kosarev, and V. S. Tujilkin (1984), Variability of hydrophysical fields in the Black Sea [in Russian], 240 pp., Gidrometeoizdat, Leningrad.Google Scholar
  4. Bishop JKB, Wood T J (2009) Year-round observations of carbon biomass and flux variability in the Southern Ocean. Glob Biogeochem Cycles 23, GB2019. doi: 10.5194/bg-11-5381-2014
  5. Boss E, Pegau WS (2001) The relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Appl Opt 40:5503–5507CrossRefGoogle Scholar
  6. Boss E, Swift D, Taylor L, Brickley P, Zaneveld R, Riser S, Perry MJ, Strutton PG (2008) Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite. Limnol Oceanogr Methods 53:2112–2122CrossRefGoogle Scholar
  7. Brewer, P.G., and D.W. Spencer (1974). Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases. In: Degens, E.T., Ross, D.A. (Eds.), The Black Sea - Geology, Chemistry and Biology. Am. Assoc. Pet. Geol. Mem. 20, 137–143Google Scholar
  8. Claustre, H., et al. (2010), Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference, Venice, Italy, 21–25 Sep., vol. 2, edited by J. Hall, D. E. Harrison, and D. Stammer, ESA Publ. WPP-306, doi: 105270/OceanObs09.cwp.17
  9. Cociasu, A., V. Diaconu, L. Popa, I. Nae, L. Buga, L. Dorogan & V. Malciu, 1997. Nutrient stock of the Romanian shelf of the Black Sea in the last three decades. In E. Ozsoy & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic and North Sea. NATO ASI Series, Kluwer Academic Publishers 27: 49–63.Google Scholar
  10. Codispoti, L.A, G.E. Friederich, J.W. Murray, and C M Sakamoto, Chemical variability in the Black Sea: implications of continuous vertical profiles that pmetrated the oxic/anoxic interface, Deep Sea Res., 38, suppl.,S 691-S710, 1991Google Scholar
  11. DeVries T, Liang J-H, Deutsch C (2014) A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences 11:5381–5398. doi: 10.5194/bg-11-5381-2014 CrossRefGoogle Scholar
  12. Fuchsman, C.A., Murray, J.W., and Staley, J.T. (2012) Stimulation of autotrophic denitrification by intrusions of the Bosporus Plume into the anoxic Black Sea. Frontiers in Aquatic Microbiology 3: 257.Gregg, M. C., and E. Ozsoy, Mixing on the Black Sea shelf north of the Bosphorus, Geophys. Res. Lett., 26, 1869–1872, 1999Google Scholar
  13. Gregg MC, Özsoy E (1999) Mixing on the Black Sea shelf north of the Bosphorus. Geophys Res Lett 26:1869–1872Google Scholar
  14. Grégoire M, Soetaert KER (2010) Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: a biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol Model 221:2287–2301CrossRefGoogle Scholar
  15. Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 369(1943):1980–1996CrossRefGoogle Scholar
  16. Huot Y, Morel A, Twardowski MS, Stramski D, Reynolds RA (2008) Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean. Biogeosciences 5:495–507CrossRefGoogle Scholar
  17. International Ocean-Color Coordinating Group (IOCCG) (2011) Bio-optical sensors on Argo floats, vol 11, edited by H. Claustre, DarthmouthGoogle Scholar
  18. Jannasch HW, Wirsen CO, Molyneaux S (1991) Chemoautotropic sulfur oxidizing bacteria from the Black Sea. Deep-Sea Res 38(Suppl. 2):S1105–S1120CrossRefGoogle Scholar
  19. Johnson KS, Claustre H (2016) Bringing biogeochemistry into the Argo age. Eos, 97, doi: 10.1029/2016EO062427
  20. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H, Emerson SR, Gruber N, Körtzinger A, Perry MJ, Riser SC (2009) Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for global array. Oceanography 22:216–225CrossRefGoogle Scholar
  21. Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 38(Suppl. 2):S1083–S1103CrossRefGoogle Scholar
  22. Karl DM, Knauer GA (1991) Microbial production and particle flux in the upper 350 m of the Black Sea. Deep-Sea Res 38(Suppl. 2):S921–S942CrossRefGoogle Scholar
  23. Kempe, S., Diercks, A. R., Liebezeit, G., & Prange, A. (1991), Geochemical and structural aspects of the pycnocline in the Black Sea (R/V Knorr 134–8 Leg 1, 1988). In Black Sea Oceanography (pp. 89–110). Springer NetherlandsGoogle Scholar
  24. Konovalov SK, Murray JW (2001) Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). J Mar Syst 31:217–243CrossRefGoogle Scholar
  25. Konovalov SK, Luther GW III, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, Oguz T, Glazer B, Trouwborst RE, Clement B, Murray KJ, Romanov AS (2003) Lateral injection of oxygen with the bosporus plume fingers of oxidizing potential in the Black Sea. Limnol Oceanogr 48:2369–2376CrossRefGoogle Scholar
  26. Konovalov SK, Murray JW, Luther GW III (2005) Basic processes of Black Sea biogeochemistry. Oceanography 18:24–35CrossRefGoogle Scholar
  27. Konovalov S, Murray J, Luther G, Tebo B (2006) Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep-Sea Res Pt II 53:1817–1841CrossRefGoogle Scholar
  28. Korotaev G, Oguz T, Riser S (2006) Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats. Deep Sea Res Pt II 53:1901–1910CrossRefGoogle Scholar
  29. Kostadinov TS, Siegel DA, Maritorena S (2009) Retrieval of the particle size distribution from satellite ocean color observations. J Geophys Res 114:C09015CrossRefGoogle Scholar
  30. Latif MA, Ozsoy E, Oguz T, Unluata U (1991) Observations of the Mediterranean inflow into the Black Sea. Deep-Sea Res 38(Suppl 2):5711–5723 1991 Google Scholar
  31. Lewis BL, Landing WM (1991) The biogeochemistry of manganese and iron in the Black Sea. Deep-Sea Res 38(Suppl. 2A):S773–S804CrossRefGoogle Scholar
  32. Loisel H, Morel A (1998) Light scattering and chlorophyll concentration in case 1 waters: a reexamination. Limnol Oceanogr 43:847–858CrossRefGoogle Scholar
  33. Loisel H, Nicolas JM, Sciandra A, Stramski D, Poteau A (2006) Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. Journal of Geophysical Research-Oceans C09024. doi: 10.1029/2005JC003367
  34. Lorthiois T, Doxaran D, Chami M (2012) Daily and seasonal dynamics of suspended particles in the Rhône River plume based on remote sensing and field optical measurements. Geo-Mar Lett 32(2):89–102CrossRefGoogle Scholar
  35. Mignot A, Claustre H, Uitz J, Poteau A, D’Ortenzio F, Xing X (2014) Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a Bio-Argo float investigation. Global Biogeochem Cycle 28:856–876. doi: 10.1002/2013GB004781 CrossRefGoogle Scholar
  36. Mikaelyan AS, Pautova LA, Chasovnikov VK, Mosharov SA, Silkin VA (2015) Alternation of diatoms and coccolithophores in the north-eastern Black Sea: a response to nutrient changes. Hydrobiologia 755(1):89–105CrossRefGoogle Scholar
  37. Morel A, Ahn YH (1991) Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells. J Mar Res 49:177–202CrossRefGoogle Scholar
  38. Morgan JA, Quinby HL, Ducklow HW (2006) Bacterial abundance and production in the western Black Sea. Deep-Sea Res II 53:1945–1960CrossRefGoogle Scholar
  39. Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, Friederich GE, Codispoti LA, Izdar E (1989) Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338:411–413CrossRefGoogle Scholar
  40. Murray JW, Top Z, Ozsoy E (1991) Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res 38:S663–S689CrossRefGoogle Scholar
  41. Murray, J. W., L. A. Codispoti, and G. E. Friederich (1995), Oxidationreduction environments: the suboxic zone in the Black Sea, in Aquatic chemistry: interfacial and interspecies processes, Adv. Chem. Ser., vol. 224, edited by C. P. Huang, C. R. OMelia, and J. J. Morgan, pp. 157–176, American Chemical Society, Washington, D.C.Google Scholar
  42. Oguz T, Dippner JW, Kaymaz Z (2006) Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales. J Marine Systems 60:235–254CrossRefGoogle Scholar
  43. Organelli E, Coauthors (2016) A novel near-real-time quality control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances. J Atmos Ocean Technol 33:937–951. doi: 10.1175/JTECH-D-15-0193.1 CrossRefGoogle Scholar
  44. Özsoy E, Unluata U, Top Z (1993) The evolution of Mediterranean water in the Black Sea: interior mixing and material transport by double diffusive intrusions. Prog Oceanogr 31(3):275–320CrossRefGoogle Scholar
  45. Ozsoy E, Iorio DD, Gregg M, Backhaus J (2001) Mixing in the Bosphorus Strait and the Black Sea continental shelf: observations and a model of the dense water outflow. J Mar Sys 31:99–135CrossRefGoogle Scholar
  46. Röttgers R, Koch BP (2012) Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean. Biogeosciences 9:2585–2596CrossRefGoogle Scholar
  47. Rozanov AG, Neretin LN, Volkov II (1998) Redox nepheloid layer (RNL) of the Black Sea: its location, composition and origin. In: Ivanov LI, Oguz T (eds) Ecosystem modeling as a management tool for the Black Sea, vol 1. Kluwer Academic Publishers, Amsterdam, pp 77–91Google Scholar
  48. Schmechtig, C., Claustre, H., Poteau, A., D’Ortenzio, F. (2014), Bio-Argo quality control manual for the chlorophyll-A concentration. http://dx.doi.org/10.13155/35385
  49. Schmechtig, C., Poteau, A., Claustre, H., D’Ortenzio, F., Boss, E. (2015a), Processing Bio-Argo chlorophyll-a concentration at the DAC level. http://dx.doi.org/10.13155/39468
  50. Schmechtig, C., Poteau, A., Claustre, H., D’Ortenzio, F., Dall’Olmo, G., Boss, E. (2015b), Processing Bio-Argo particle backscattering at the DAC level. http://dx.doi.org/10.13155/39459
  51. Shaffer G (1986) Phosphorus pumps and shuttles in the Black Sea, Letters to Nature. 321:515–517Google Scholar
  52. Spencer DW, Brewer PG (1971) Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J Geophys Res 76:5877–5892CrossRefGoogle Scholar
  53. Stanev EV (2005) Understanding Black Sea dynamics: overview of recent numerical modelling. Oceanography 18:56–75CrossRefGoogle Scholar
  54. Stanev EV, Simeonov JA, Peneva EL (2001) Ventilation of Black Sea pycnocline by the Mediterranean plume. J Mar Syst 31:77–97CrossRefGoogle Scholar
  55. Stanev EV, Staneva J, Bullister JL, Murray JW (2004) Ventilation of the Black Sea pycnocline. Parameterization of convection, numerical simulations and validations against observed chlorofluorocarbon data. Deep-Sea Res 51:2137–2169CrossRefGoogle Scholar
  56. Stanev EV, He Y, Grayek S, Boetius A (2013) Oxygen dynamics in the Black Sea as seen by Argo profiling floats. Geophys Res Lett 40(3085–3090). doi: 10.1002/grl.50606
  57. Stanev EV, He Y, Staneva J, Yakushev E (2014) Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide—Argo float observations and numerical modelling. Biogeosciences 11(5707–5732):2014. doi: 10.5194/bg-11-5707-2014 Google Scholar
  58. Stramski D, Kiefer DA (1991) Light scattering by microorganisms in the open ocean. Prog Oceanogr 28:343–383CrossRefGoogle Scholar
  59. Sullivan JM, Twardowski MS (2009) Angular shape of the volume scattering function in the backwards direction. Appl Opt 48(35):6811–6819CrossRefGoogle Scholar
  60. Tebo B (1991) Manganese (II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Res II 441(38):S883–S905Google Scholar
  61. Wakeham SG, Amann R, Freeman KH, Hopmans EC, Jørgensen BB, Putnam IF, Schouten S, Sinninghe Damsté JS, Talbot HM, Woebken D (2007) Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem 38(12):2070–2097CrossRefGoogle Scholar
  62. White G., M. Relander, J. Postal and J. W. Murray (1989), Hydrographic data from the 1988 Black Sea Oceanographic Expedition, Special report (School of Oceanography, College of Ocean and Fishery Sciences, University of Washington), no 109, 34ppGoogle Scholar
  63. Xing, X., Morel, A., Claustre, H., D'Ortenzio, F., and A. Poteau (2012), Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval. Journal of Geophysical Research, Vol. 117, No. C4, C04022,  http://dx.doi.org/10.1029/2011JC007632
  64. Xing X, Claustre H, Uitz J, Mignot A, Poteau A, Wang H (2014) Seasonal variations of bio-optical properties and their interrelationships observed by Bio-Argo floats in the subpolar North Atlantic. J Geophys Res Oceans 119. doi: 10.1002/2014JC010189
  65. Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 107:388–410CrossRefGoogle Scholar
  66. Yilmaz A, Tuğrul S, Polat C, Ediger D, Çoban Y, Morkoç E (1998) On the production, elemental composition (C, N, P) and distribution of photosynthetic organic matter in the southern Black Sea. Hydrobiologia 363(1):141–155Google Scholar
  67. Yilmaz A, Coban-Yildiz Y, Telli-Karakoc F, Bologa A (2006) Surface and mid-water sources of organic carbon by photoautotrophic and chemoautotrophic production in the Black Sea. Deep Sea Research II 53:1988–2004CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Emil Vassilev Stanev
    • 1
    • 2
  • Sebastian Grayek
    • 1
  • Hervé Claustre
    • 3
  • Chaterine  Schmechtig
    • 4
  • Antoine Poteau
    • 3
  1. 1.Institute of Coastal Research, Helmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Department of Meteorology and GeophysicsUniversity of SofiaSofiaBulgaria
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7093, Laboratoire d’Océanographie de Villefranche (LOV)Villefranche sur MerFrance
  4. 4.Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMS 3455, OSU Ecce-TerraParis Cédex 5France

Personalised recommendations