Ocean Dynamics

, Volume 67, Issue 8, pp 1047–1066 | Cite as

Using a dynamical advection to reconstruct a part of the SSH evolution in the context of SWOT, application to the Mediterranean Sea

  • Marine RogéEmail author
  • Rosemary Morrow
  • Clément Ubelmann
  • Gérald Dibarboure
Part of the following topical collections:
  1. Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016


The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5–10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16–18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.


SSH mapping Quasi-geostrophy Future altimetry Mediterranean sea 



We gratefully acknowledge Claude Estournel for the Symphonie OGCM data used here, Florent Lyard for the modal decomposition and Romain Escudier for his figures. M Rogé was supported through a PhD grant from Centres National des Etudes Spatiales and Collecte Localisation Satellite. This work is a contribution to the French CNES-TOSCA programme.


  1. Alberola C, Millot C, Font J (1995) On the seasonal and mesoscale variabilities of the Northern current during the PRIMO-0 experiment in the western Mediterranean-sea. Oceanol Acta 18(2):163–192Google Scholar
  2. Allou A, Forget P, Devenon J- L (2010) Submesoscale vortex structures at the entrance of the Gulf of Lions in the Northwestern Mediterranean sea. Cont Shelf Res 30(7):724–732. doi: 10.1016/j.csr.2010.01.006 CrossRefGoogle Scholar
  3. Arakawa A, Suarez M J (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon Weather Rev 111(1):34–45. doi: 10.1007/10.1175/1520-0493(1983)111%3C0034:VDOTPE%3E2.0.CO;2 CrossRefGoogle Scholar
  4. Arbic B K, Flierl G R (2003) Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence. Phys Fluids 15:2177–2189. doi: 10.1063/1.1582183 CrossRefGoogle Scholar
  5. Arbic B K, Flierl G R (2004) Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J Phys Oceanogr 34(1):77–93CrossRefGoogle Scholar
  6. Ayoub N, Le Traon P-Y, De Mey P (1998) A description of the Mediterranean surface variable circulation from combined ERS-1 and TOPEX/POSEIDON altimetric data. J Mar Syst 18(1–3):3–40. doi: 10.1016/S0924-7963(98)80004-3 CrossRefGoogle Scholar
  7. Birol F, Delebecque C (2014) Using high sampling rate (10/20hz) altimeter data for the observation of coastal surface currents: a case study over the northwestern Mediterranean Sea. J Mar Syst 129:318–333CrossRefGoogle Scholar
  8. Bosse A (2016) Circulation générale et couplage physique-biogéochimie à (sous-)mésoéchelle en Méditerranée Nord-occidentale à partir de données in situ. Paris 6Google Scholar
  9. Bosse A, Testor P, Mortier L, Béguery L, Bernardet K, Taillandier V, d’Ortenzio F, Prieur L, Coppola L, Bourrin F (2013) New insights of the northern current in the western mediterranean sea from gliders data: mean structure, transport, and seasonal variability. EGU General Assembly, Vienna, pp EGU2013–11315–2Google Scholar
  10. Bouffard J, Nencioli F, Escudier R, Doglioli A M, Petrenko A A, Pascual A, Poulain P M, Elhmaidi D (2014) Lagrangian analysis of satellite-derived currents: application to the North Western Mediterranean coastal dynamics. Adv Space Res 53(5):788–801. doi: 10.1016/j.asr.2013.12.020 CrossRefGoogle Scholar
  11. Callies J, Ferrari R, Klymak JM, Gula J (2015) Seasonality in submesoscale turbulence. Nat Commun 6:6862. doi: 10.1038/ncomms7862 CrossRefGoogle Scholar
  12. Chelton D B, deSzoeke R A, Schlax M G, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28(3):433–460. doi: 10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2 CrossRefGoogle Scholar
  13. Chelton D B, Schlax M G, Samelson R M (2011) Global observations of nonlinear mesoscale eddies. Progress Oceanogr 91(2):167–216. doi: 10.1016/j.pocean.2011.01.002 CrossRefGoogle Scholar
  14. Crepon M, Wald L, Monget J M (1982) Low frequency waves in the Ligurian sea during December 1977. J Geophys Res Oceans 87(C1):595–600CrossRefGoogle Scholar
  15. Damien P (2015) Etude de la circulation océanique en Méditerranée Occidentale à l’aide d’un modèle numérique à haute résolution: influence de la submésoéchelle. Toulouse 3Google Scholar
  16. Dibarboure G, Boy F, Desjonqueres J D, Labroue S, Lasne Y, Picot N, Poisson J C, Thibaut P (2014) Investigating short-wavelength correlated errors on low-resolution mode altimetry. J Atmos Ocean Technol 31(6):1337–1362. doi: 10.1175/JTECH-D-13-00081.1 CrossRefGoogle Scholar
  17. Durand M, Rodriguez E, Alsdorf D E, Trigg M (2010) Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width. IEEE J Sel Top Appl Earth Observ Remote Sens 3 (1):20–31. doi: 10.1109/JSTARS.2009.2033453 CrossRefGoogle Scholar
  18. Escudier R, Bouffard J, Pascual A, Poulain P- M, Pujol M- I (2013) Improvement of coastal and mesoscale observation from space: application to the northwestern Mediterranean sea. Geophys Res Lett 40 (10):2148–2153. doi: 10.1002/grl.50324 CrossRefGoogle Scholar
  19. Escudier R, Renault L, Pascual A, Brasseur P, Chelton D, Beuvier J (2016) Eddy properties in the Western Mediterranean sea from satellite altimetry and a numerical simulation. J Geophys Res Oceans 121 (6):3990–4006. doi: 10.1002/2015JC011371 CrossRefGoogle Scholar
  20. Estournel C, Kondrachoff V, Marsaleix P, Vehil R (1997) The plume of the Rhone: numerical simulation and remote sensing. Cont Shelf Res 17(8):899–924. doi: 10.1016/S0278-4343(96)00064-7 CrossRefGoogle Scholar
  21. Estournel C, Testor P, Damien P, D’Ortenzio F, Marsaleix P, Conan P, Kessouri F, Durrieu de Madron X, Coppola L, Lellouche JM, Belamari S, Mortier L, Ulses C, Bouin MN, Prieur L (2016) High resolution modeling of dense water formation in the north-western Mediterranean during winter 2012–2013: processes and budget. J Geophys Res Oceans 121(7):5367–5392. doi: 10.1002/2016JC011935 CrossRefGoogle Scholar
  22. Flexas MM, Durrieu de Madron X, Garcia MA, Canals M, Arnau P (2002) Flow variability in the Gulf of Lions during the MATER HFF experiment (March–May 1997). J Mar Syst 33–34:197–214. doi: 10.1016/S0924-7963(02)00059-3 CrossRefGoogle Scholar
  23. Font J, Garcialadona E, Gorriz E (1995) The seasonality of mesoscale motion in the northern current of the western mediterranean - several years of evidence. Oceanol Acta 18(2):207–219Google Scholar
  24. Fu L-L, Chelton DB (2001) Chapter 2 large-scale ocean circulation. In: Cazenave L-LF, Anny (eds) International geophysics. Satellite altimetry and earth sciences: a handbook of techniques and applications, vol 69. Academic Press, pp 133–viiiGoogle Scholar
  25. Garcia-Ladona E, Djenidi S (1991) A reduced-gravity model of the Catalan sea. J Mar Syst 1(4):333–341. doi: 10.1016/0924-7963(91)90002-C CrossRefGoogle Scholar
  26. Gascard J (1978) Mediterranean deep-water formation baroclinic instability and oceanic Eddies. MyScienceWorkGoogle Scholar
  27. Gill AE (1982) Atmosphere-ocean dynamics. Academic Press. Google-Books-ID: 8kFPh_SvnAICGoogle Scholar
  28. Grilli F, Pinardi N (1998) The computation of Rossby radii of deformation for the Mediterranean sea. MTP News 6(4):4–5Google Scholar
  29. Guihou K, Marmain J, Ourmières Y, Molcard A, Zakardjian B, Forget P (2013) A case study of the mesoscale dynamics in the north-western Mediterranean sea: a combined data–model approach. Ocean Dyn 63 (7):793–808. doi: 10.1007/s10236-013-0619-z CrossRefGoogle Scholar
  30. Herrmann M, Somot S, Sevault F, Estournel C, Déqué M (2008) Modeling the deep convection in the northwestern Mediterranean sea using an Eddy-permitting and an Eddy-resolving model: case study of winter 1986–1987. J Geophys Res Oceans 113(C4):C04011. doi: 10.1029/2006JC003991 CrossRefGoogle Scholar
  31. Hu Z Y, Petrenko A A, Doglioli A M, Dekeyser I (2011) Numerical study of Eddy generation in the western part of the Gulf of Lion. J Geophys Res Oceans 116(C12):C12030. doi: 10.1029/2011JC007074 CrossRefGoogle Scholar
  32. Hua B-L, Thomasset F (1983) A numerical study of the effects of coastline geometry on wind-induced upwelling in the Gulf of Lions. J Phys Oceanogr 13(4):678–694. doi: 10.1175/1520-0485(1983)013%3C0678:ANSOTE%3E2.0.CO;2 CrossRefGoogle Scholar
  33. Killworth P D (1997) On the parameterization of eddy transfer Part I. Theory. J Mar Res 55(6):1171–1197. doi: 10.1357/0022240973224102 CrossRefGoogle Scholar
  34. Le Traon P- Y, Dibarboure G (1999) Mesoscale mapping capabilities of multiple-satellite altimeter missions. J Atmos Ocean Technol 16(9):1208–1223CrossRefGoogle Scholar
  35. Malanotte-Rizzoli P, Artale V, Borzelli-Eusebi G L, Brenner S, Crise A, Gacic M, Kress N, Marullo S, Ribera d’Alcalà M, Sofianos S, Tanhua T, Theocharis A, Alvarez M, Ashkenazy Y, Bergamasco A, Cardin V, Carniel S, Civitarese G, D’Ortenzio F, Font J, Garcia-Ladona E, Garcia-Lafuente J M, Gogou A, Gregoire M, Hainbucher D, Kontoyannis H, Kovacevic V, Kraskapoulou E, Kroskos G, Incarbona A, Mazzocchi M G, Orlic M, Ozsoy E, Pascual A, Poulain P M, Roether W, Rubino A, Schroeder K, Siokou-Frangou J, Souvermezoglou E, Sprovieri M, Tintoré J, Triantafyllou G (2014) Physical forcing and physical/biochemical variability of the Mediterranean sea: a review of unresolved issues and directions for future research. Ocean Sci 10(3):281–322. doi: 10.5194/os-10-281-2014 CrossRefGoogle Scholar
  36. Marsaleix P, Auclair F, Floor J W, Herrmann M J, Estournel C, Pairaud I, Ulses C (2008) Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Model 20(1):61–89. doi: 10.1016/j.ocemod.2007.07.005 CrossRefGoogle Scholar
  37. Marsaleix P, Auclair F, Estournel C (2009) Low-order pressure gradient schemes in sigma coordinate models: the seamount test revisited. Ocean Model 30(2–3):169–177. doi: 10.1016/j.ocemod.2009.06.011 CrossRefGoogle Scholar
  38. Marsaleix P, Auclair F, Duhaut T, Estournel C, Nguyen C, Ulses C (2012) Alternatives to the Robert–Asselin filter. Ocean Model 41:53–66. doi: 10.1016/j.ocemod.2011.11.002 CrossRefGoogle Scholar
  39. Millot C (1985) Some features of the Algerian current. J Geophys Res Oceans 90(C4):7169–7176. doi: 10.1029/JC090iC04p07169 CrossRefGoogle Scholar
  40. Millot C (1991) Mesoscale and seasonal variabilities of the circulation in the western Mediterranean. Dyn Atmos Oceans 15(3–5):179–214. doi: 10.1016/0377-0265(91)90020-G CrossRefGoogle Scholar
  41. Morrow R, Le Traon P-Y (2012) Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv Space Res 50(8):1062–1076. doi: 10.1016/j.asr.2011.09.033 CrossRefGoogle Scholar
  42. Oguz T, Macias D, Garcia-Lafuente J, Pascual A, Tintore J (2014) Fueling Plankton production by a meandering frontal jet: a case study for the Alboran sea (western Mediterranean). PLOS ONE 9(11):e111482. doi: 10.1371/journal.pone.0111482 CrossRefGoogle Scholar
  43. Pascual A, Buongiorno Nardelli B, Larnicol G, Emelianov M, Gomis D (2002) A case of an intense anticyclonic eddy in the Balearic sea (western Mediterranean). J Geophys Res Oceans 107(C11):3183. doi: 10.1029/2001JC000913 CrossRefGoogle Scholar
  44. Pascual A, Escudier R, Bouffard J, Sayol J (2011) High resolution altimeter gridded fields for coastal and regional studies: applications in the western Mediterranean. In: 5th coastal altimetry workshop. San-Diego, p 59
  45. Pascual A, Ruiz S, Buongiorno Nardelli B, Guinehut S, Iudicone D, Tintoré J (2015) Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges. Geophys Res Lett 42 (2):2014GL062569. doi: 10.1002/2014GL062569 CrossRefGoogle Scholar
  46. Peliz A, Boutov D, Teles-MaChado A (2013) The Alboran sea mesoscale in a long term high resolution simulation: statistical analysis. Ocean Model 72:32–52. doi: 10.1016/j.ocemod.2013.07.002 CrossRefGoogle Scholar
  47. Petrenko A A (2003) Variability of circulation features in the Gulf of Lion NW Mediterranean sea. Importance of inertial currents. Oceanol Acta 26(4):323–338. doi: 10.1016/S0399-1784(03)00038-0 CrossRefGoogle Scholar
  48. Petrenko A, Leredde Y, Marsaleix P (2005) Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean sea: in situ and modeling data. Cont Shelf Res 25(1):7–27. doi: 10.1016/j.csr.2004.09.004 CrossRefGoogle Scholar
  49. Pinardi N, Arneri E, Crise A, Ravaioli M, Zavatarelli M (2006) The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean sea, vol 27. Harvard University PressGoogle Scholar
  50. Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, Bonaduce A (2015) Mediterranean sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr 132:318–332. doi: 10.1016/j.pocean.2013.11.003 CrossRefGoogle Scholar
  51. Poulain P M, Menna M, Mauri E (2012) Surface geostrophic circulation of the Mediterranean sea derived from drifter and satellite altimeter data. J Phys Oceanogr 42(6):973–990. doi: 10.1175/JPO-D-11-0159.1 CrossRefGoogle Scholar
  52. Preller R, Hurlburt H E (1982) A reduced gravity numerical model of circulation in the Alboran sea. In: Nihoul JCJ (ed) Elsevier oceanography series. Hydrodynamics of semi-enclosed seasproceedings of the 13th international liege colloquium on ocean hydrodynamics, vol 34. Elsevier, pp 75–89Google Scholar
  53. Puillat I, Taupier-Letage I, Millot C (2002) Algerian Eddies lifetime can near 3 years. J Mar Syst 31 (4):245–259. doi: 10.1016/S0924-7963(01)00056-2 CrossRefGoogle Scholar
  54. Pujol M- I, Larnicol G (2005) Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J Mar Syst 58(3–4):121–142. doi: 10.1016/j.jmarsys.2005.07.005 CrossRefGoogle Scholar
  55. Pujol M- I, Faugère Y, Taburet G, Dupuy S, Pelloquin C, Ablain M, Picot N (2016) DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci 12(5):1067–1090. doi: 10.5194/os-12-1067-2016 CrossRefGoogle Scholar
  56. Renault L, Oguz T, Pascual A, Vizoso G, Tintore J (2012) Surface circulation in the Alborán Sea (western Mediterranean) inferred from remotely sensed data. J Geophys Res Oceans 117(C8):C08009. doi: 10.1029/2011JC007659 CrossRefGoogle Scholar
  57. Robinson IS (2010) Discovering the Ocean from space: the unique applications of satellite oceanography. Springer Science & Business MediaGoogle Scholar
  58. Rodriguez E (2010) The Surface Water and Ocean Topography Mission (SWOT): the Ka-band Radar Interferometer (KaRIn) for water level measurements at all scales | Sensors, Systems, and Next-Generation Satellites XIV | ERS10 | SPIE Proceedings |SPIE.
  59. Rubio A, Arnau P A, Espino M, Flexas MdM, Jordà G, Salat J, Puigdefàbregas J, S-Arcilla A (2005) A field study of the behaviour of an anticyclonic eddy on the Catalan continental shelf (NW Mediterranean). Prog Oceanogr 66(2–4):142–156. doi: 10.1016/j.pocean.2004.07.012 CrossRefGoogle Scholar
  60. Rubio A, Barnier B, Jordà G, Espino M, Marsaleix P (2009) Origin and dynamics of mesoscale eddies in the Catalan sea (NW Mediterranean): insight from a numerical model study. J Geophys Res Oceans 114 (C6):C06009. doi: 10.1029/2007JC004245 CrossRefGoogle Scholar
  61. Ruiz S, Font J, Emelianov M, Isern-Fontanet J, Millot C, Salas J, Taupier-Letage I (2002) Deep structure of an open sea eddy in the Algerian basin. J Mar Syst 33–34:179–195. doi: 10.1016/S0924-7963(02)00058-1 CrossRefGoogle Scholar
  62. Sammari C, Millot C, Prieur L (1995) Aspects of the seasonal and mesoscale variabilities of the Northern Current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 experiments. Deep-Sea Res I Oceanogr Res Pap 42(6):893–917. doi: 10.1016/0967-0637(95)00031-Z CrossRefGoogle Scholar
  63. Schaeffer A (2010) Impact du vent sur la circulation hydrodynamique dans le Golfe du Lion: modélisation haute résolution.
  64. Taupier-Letage I, Millot C (1986) General hydrodynamical features in the ligurian sea inferred from the dyome experiment. Oceanol ActaGoogle Scholar
  65. Taupier-Letage I, Millot C (1988) Surface circulation in the Algerian basin during 1984. Oceanol Acta, Special issueGoogle Scholar
  66. Testor P, Gascard J- C (2005) Large scale flow separation and mesoscale Eddy formation in the Algerian basin. Prog Oceanogr 66(2–4):211–230. doi: 10.1016/j.pocean.2004.07.018 CrossRefGoogle Scholar
  67. Ubelmann C, Klein P, Fu L L (2015) Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. J Atmos Ocean Technol. doi: 10.1175/JTECH-D-14-00152.1
  68. Wunsch C (1997) The vertical partition of oceanic horizontal kinetic energy. J Phys Oceanogr 27(8):1770–1794. doi: 10.1175/1520-0485(1997)027%3C1770:TVPOOH%3E2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire d’Etude en Géophysique et Océanographie SpatialeToulouseFrance
  2. 2.Collecte Localisation SatelliteRamonville St-AgneFrance
  3. 3.Centre National d’Etudes SpatialesToulouseFrance

Personalised recommendations