Advertisement

Ocean Dynamics

, Volume 67, Issue 7, pp 897–913 | Cite as

Submesoscale tidal eddies in the wake of coral islands and reefs: satellite data and numerical modelling

  • Philippe DelandmeterEmail author
  • Jonathan Lambrechts
  • George O. Marmorino
  • Vincent Legat
  • Eric Wolanski
  • Jean-François Remacle
  • Wei Chen
  • Eric Deleersnijder
Article
Part of the following topical collections:
  1. Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016

Abstract

Interaction of tidal flow with a complex topography and bathymetry including headlands, islands, coral reefs and shoals create a rich submesoscale field of tidal jets, vortices, unsteady wakes, lee eddies and free shear layers, all of which impact marine ecology. A unique and detailed view of the submesoscale variability in a part of the Great Barrier Reef lagoon, Australia, that includes a number of small islands was obtained by using a “stereo” pair of 2-m-resolution visible-band images that were acquired just 54 s apart by the WorldView-3 satellite. Near-surface current and vorticity were extracted at a 50-m-resolution from those data using a cross-correlation technique and an optical-flow method, each yielding a similar result. The satellite-derived data are used to test the ability of the second-generation Louvain-la-Neuve ice-ocean model (SLIM), an unstructured-mesh, finite element model for geophysical and environmental flows, to reproduce the details of the currents in the region. The model succeeds in simulating the large-scale (> 1 km) current patterns, such as the main current and the width and magnitude of the jets developing in the gaps between the islands. Moreover, the order of magnitude of the vorticity and the occurrence of some vortices downstream of the islands are correctly reproduced. The smaller scales (< 500 m) are resolved by the model, although various discrepancies with the data are observed. The smallest scales (< 50 m) are unresolved by both the model- and image-derived velocity fields. This study shows that high-resolution models are able to a significant degree to simulate accurately the currents close to a rugged coast. Very-high-resolution satellite oceanography stereo images offer a new way to obtain snapshots of currents near a complex topography that has reefs, islands and shoals, and is a potential resource that could be more widely used to assess the predictive ability of coastal circulation models.

Keywords

Submesoscale eddies High-resolution satellite imagery SLIM Unstructured mesh 

Notes

Acknowledgements

Computational resources were provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Belgian Fund for Scientific Research (F.R.S-FNRS) under Grant No. 2.5020.11. G. Marmorino was supported by NRL project 721C0-06 and W. Chen by project 6778-06. E. Deleersnijder is an honorary research associate with the F.R.S-FNRS.

References

  1. Beaman R (2010) Project 3DGBR: a high-resolution depth model for the Great Barrier Reef and Coral Sea. Marine and Tropical Sciences Research Facility (MTSRF) Project 2.5 i. 1a Final Report. Reef and Rainforest Research Centre, Cairns Australia p 13 & Appendix 1Google Scholar
  2. Caldeira RMA, Sangrà P (2012) Complex geophysical wake flows. Ocean Dyn 62(5):683–700CrossRefGoogle Scholar
  3. Carrere L, Lyard F, Cancet M, Guillot A (2015) FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region In: EGU General assembly conference abstracts, vol 17, p 5481Google Scholar
  4. Chen W (2011) Nonlinear inverse model for velocity estimation from an image sequence. J Geophys Res Oceans 116:C6CrossRefGoogle Scholar
  5. Coutis P, Middleton J (2002) The physical and biological impact of a small island wake in the deep ocean. Deep-Sea Res I Oceanogr Res Pap 49(8):1341–1361CrossRefGoogle Scholar
  6. Critchell K, Lambrechts J (2016) Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuar Coast Shelf Sci 171:111–122CrossRefGoogle Scholar
  7. Critchell K, Grech A, Schlaefer J, Andutta F, Lambrechts J, Wolanski E, Hamann M (2015) Modelling the fate of marine debris along a complex shoreline: lessons from the Great Barrier Reef. Estuar Coast Shelf Sci 167:414–426CrossRefGoogle Scholar
  8. Dam G, Bliek A, Labeur R, Ides S, Plancke Y (2007) Long term process-based morphological model of the Western Scheldt Estuary. In: Dohmen-Janssen CM, Hulscher SJMH (eds) Proceedings of 5th IAHR symposium of the River, Coastal and Estuarine Morphodynamics Conference, vol 2. Taylor & Francis, Leiden, pp 1077–1084Google Scholar
  9. Delandmeter P, Lewis SE, Lambrechts J, Deleersnijder E, Legat V, Wolanski E (2015) The transport and fate of riverine fine sediment exported to a semi-open system. Estuar Coast Shelf Sci 167:336–346CrossRefGoogle Scholar
  10. Deleersnijder E (2016) Some thoughts on diagnoses for eddies in the Great Barrier Reef, Australia. http://hdl.handle.net/2078.1/169841. Université catholique de Louvain, working note, 26 pages
  11. Dong C, McWilliams JC (2007) A numerical study of island wakes in the Southern California Bight. Cont Shelf Res 27(9):1233–1248CrossRefGoogle Scholar
  12. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19(2):183–204CrossRefGoogle Scholar
  13. Eliassen IK, Heggelund Y, Haakstad M (2001) A numerical study of the circulation in Saltfjorden, Saltstraumen and Skjerstadfjorden. Cont Shelf Res 21(15):1669–1689CrossRefGoogle Scholar
  14. Falconer RA, Wolanski E, Mardapitta-Hadjipandeli L (1986) Modeling tidal circulation in an island’s wake. J Waterway Port Coast Ocean Eng 112(2):234–254CrossRefGoogle Scholar
  15. Furnas M (1992) Pelagic Trichodesmium (= Oscillatoria) in the Great Barrier Reef region. In: Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Springer, pp 265–272Google Scholar
  16. Grech A, Wolter J, Coles R, McKenzie L, Rasheed M, Thomas C, Waycott M, Hanert E (2016) Spatial patterns of seagrass dispersal and settlement. Diver Distrib 22(11):1150–1162CrossRefGoogle Scholar
  17. Hamann M, Grech A, Wolanski E, Lambrechts J (2011) Modelling the fate of marine turtle hatchlings. Ecol Model 222(8):1515–1521CrossRefGoogle Scholar
  18. Hammer W, Hauri I (1977) Fine-scale surface currents in the Whitsunday Islands, Queensland, Australia: effect of tide and topography. Marine Freshwater Res 28(3):333–359CrossRefGoogle Scholar
  19. Hanert E (2004) Towards a finite element ocean circulation model. PhD thesis, Université catholique de LouvainGoogle Scholar
  20. Huang Z, Ferré J, Kawall J, Keffer J (1995) The connection between near and far regions of the turbulent porous body wake. Exper Thermal Fluid Scis 11(2):143–154CrossRefGoogle Scholar
  21. Jones JE, Davies AM (2008) Storm surge computations for the west coast of Britain using a finite element model (TELEMAC). Ocean Dyn 58(5–6):337–363CrossRefGoogle Scholar
  22. Kingsford M, Wolanski E (2008) Oceanography. In: Hutchings PA, Hoegh-Guldberg O (eds) The Great Barrier Reef: biology, environment and management, vol 2. Csiro publishing and Springer, Collingwood and Dordrecht, pp 28–39Google Scholar
  23. Lambrechts J, Hanert E, Deleersnijder E, Bernard PE, Legat V, Remacle JF, Wolanski E (2008) A multi-scale model of the hydrodynamics of the whole Great Barrier Reef. Estuar Coast Shelf Sci 79(1):143–151CrossRefGoogle Scholar
  24. Lambrechts J, Humphrey C, McKinna L, Gourge O, Fabricius K, Mehta A, Lewis S, Wolanski E (2010) Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuar Coast Shelf Sci 89(2):154–162CrossRefGoogle Scholar
  25. Le Bars Y, Vallaeys V, Deleersnijder E, Hanert E, Carrere L, Channelière C (2016) Unstructured-mesh modeling of the Congo river-to-sea continuum. Ocean Dyn 66(4):589–603CrossRefGoogle Scholar
  26. Legrand S, Deleersnijder E, Hanert E, Legat V, Wolanski E (2006) High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuar Coast Shelf Sci 68(1):36–46CrossRefGoogle Scholar
  27. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415CrossRefGoogle Scholar
  28. Mantovanelli A, Heron M, Heron S, Steinberg C (2012) Relative dispersion of surface drifters in a barrier reef region. J Geophys Res Oceans 117:C11CrossRefGoogle Scholar
  29. Mao Y, Luick JL (2014) Circulation in the southern Great Barrier Reef studied through an integration of multiple remote sensing and in situ measurements. J Geophys Res Oceans 119(3):1621–1643CrossRefGoogle Scholar
  30. McKinna LI (2015) Three decades of ocean-color remote-sensing Trichodesmium spp. in the World’s oceans: a review. Progress Oceanogr 131:177–199CrossRefGoogle Scholar
  31. McKinna LI, Furnas MJ, Ridd PV (2011) A simple, binary classification algorithm for the detection of Trichodesmium spp. within the Great Barrier Reef using MODIS imagery. Limnol Oceanogr Methods 9(2):50–66CrossRefGoogle Scholar
  32. Munday DR, Marshall DP, Piggott MD (2010) Idealised flow past an island in a dynamically adaptive finite element model. Ocean Dyn 60(4):835–850CrossRefGoogle Scholar
  33. Nakano M (1957) On the eddies of Naruto Strait. Papers Meteorol Geophys 7(4):425–434CrossRefGoogle Scholar
  34. Obst BS, Hamner WM, Hamner PP (1996) Kinematics of phalarope spinning. Nature 384:121CrossRefGoogle Scholar
  35. Onishi S (1984) Study of vortex structure in water surface jets by means of remote sensing. Elsevier Oceanogr Series 38:107–132CrossRefGoogle Scholar
  36. Onishi S, Nishimura T (1980) Study on vortex current in strait with remote-sensing. Coast Eng Proc 1:17Google Scholar
  37. Pham Van C, Deleersnijder E, Bousmar D, Soares-Frazao S (2014) Simulation of flow in compound open-channel using a discontinuous Galerkin finite-element method with Smagorinsky turbulence closure. J Hydro-environ Res 8(4):396–409CrossRefGoogle Scholar
  38. Robinson AR (2012) Eddies in marine science. Springer Science & Business MediaGoogle Scholar
  39. Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteorol Soc 91(8):1015CrossRefGoogle Scholar
  40. Sakamoto H, Tan K, Haniu H (1991) An optimum suppression of fluid forces by controlling a shear layer separated from a square prism. J Fluids Eng 113:183CrossRefGoogle Scholar
  41. Signell RP, Geyer WR (1991) Transient eddy formation around headlands. J Geophys Res 96(C2):2561–2575CrossRefGoogle Scholar
  42. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. the basic experiment. Mon Weather Rev 91(3):99–164CrossRefGoogle Scholar
  43. Strykowski P, Sreenivasan K (1990) On the formation and suppression of vortex ’shedding’ at low Reynolds numbers. J Fluid Mech 218:71–107CrossRefGoogle Scholar
  44. Thomas CJ, Lambrechts J, Wolanski E, Traag VA, Blondel VD, Deleersnijder E, Hanert E (2014) Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecol Modell 272:160–174CrossRefGoogle Scholar
  45. Thomas CJ, Bridge TC, Figueiredo J, Deleersnijder E, Hanert E (2015) Connectivity between submerged and near-sea-surface coral reefs: can submerged reef populations act as refuges? Diver Distrib 21(10):1254–1266CrossRefGoogle Scholar
  46. Tseng Q, Duchemin-Pelletier E, Deshiere A, Balland M, Guillou H, Filhol O, Théry M (2012) Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc Natl Acad Sci 109(5):1506–1511CrossRefGoogle Scholar
  47. White L, Wolanski E (2008) Flow separation and vertical motions in a tidal flow interacting with a shallow-water island. Estuar Coast Shelf Sci 77(3):457–466CrossRefGoogle Scholar
  48. Wolanski E (1993) Facts and numerical artefacts in modelling the dispersal of crown-of-thorns starfish larvae in the Great Barrier Reef. Marine Freshwater Res 44(3):427–436CrossRefGoogle Scholar
  49. Wolanski E (1994) Physical oceanographic processes of the Great Barrier Reef. CRC PressGoogle Scholar
  50. Wolanski E (2016) Bounded and unbounded boundaries—untangling mechanisms for estuarine-marine ecological connectivity: scales of m to 10,000 km—a review. Estuar Coast Shelf SciGoogle Scholar
  51. Wolanski E, Elliott M (2015) Estuarine ecohydrology: an introduction, 2nd edn. Elsevier, Amsterdam. 322 ppGoogle Scholar
  52. Wolanski E, Hamner W (1988) Topographically controlled fronts in the ocean and their biological influence. Science 241:177–181CrossRefGoogle Scholar
  53. Wolanski E, Kingsford MJ (2014) Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae. J R Soc Inter 11(98):20140–209CrossRefGoogle Scholar
  54. Wolanski E, Imberger J, Heron M (1984) Island wakes in shallow coastal waters. J Geophys Res 89 (C6):10,553–10,569CrossRefGoogle Scholar
  55. Wolanski E, Asaeda T, Tanaka A, Deleersnijder E (1996) Three-dimensional island wakes in the field, laboratory experiments and numerical models. Cont Shelf Res 16(11):1437–1452CrossRefGoogle Scholar
  56. Wolanski E, Brinkman R, Spagnol S, McAllister F, Steinberg C, Skirving W, Deleersnijder E (2003) Merging scales in models of water circulation: perspectives from the Great Barrier Reef. Elsevier Oceanogr Ser 67:411–429CrossRefGoogle Scholar
  57. Young I, Black K, Heron M (1994) Circulation in the ribbon reef region of the Great Barrier Reef. Cont Shelf Res 14(2):117–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Philippe Delandmeter
    • 1
    Email author return OK on get
  • Jonathan Lambrechts
    • 1
  • George O. Marmorino
    • 2
  • Vincent Legat
    • 1
  • Eric Wolanski
    • 3
  • Jean-François Remacle
    • 1
  • Wei Chen
    • 2
  • Eric Deleersnijder
    • 4
    • 5
  1. 1.Institute of Mechanics, Materials and Civil Engineering (IMMC)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Remote Sensing DivisionNaval Research LaboratoryWashington, DCUSA
  3. 3.TropWATER and College of Marine and Environmental SciencesJames Cook UniversityTownsvilleAustralia
  4. 4.Institute of Mechanics, Materials and Civil Engineering (IMMC) & Earth and Life Institute (ELI)Université catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Delft Institute of Applied Mathematics (DIAM)Delft University of TechnologyDelftThe Netherlands

Personalised recommendations