Advertisement

Ocean Dynamics

, Volume 67, Issue 6, pp 767–782 | Cite as

Frontal dynamics boost primary production in the summer stratified Mediterranean sea

  • Antonio Olita
  • Arthur Capet
  • Mariona Claret
  • Amala Mahadevan
  • Pierre Marie Poulain
  • Alberto Ribotti
  • Simón Ruiz
  • Joaquín Tintoré
  • Antonio Tovar-Sánchez
  • Ananda Pascual
Article
Part of the following topical collections:
  1. Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016

Abstract

Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (∼ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δρ ∼ 1 kg/m3 in ∼ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685–698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m−2d−1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated. The logarithm of the primary production in the DCM interior (chlorophyll (Chl) > 0.5 mg/m3) shows a linear negative relationship with the apparent oxygen utilization, confirming that high chlorophyll patches are productive. The slope of this relationship is different for Atlantic, mixed interface waters and Mediterranean waters, suggesting the presence of differences in planktonic communities (whether physiological, population, or community level should be object of further investigation) on the different sides of the front. In addition, the ratio of optical backscatter to Chl is high within the intermediate (mixed) waters, which is suggestive of large phytoplankton cells, and lower within the core of the Atlantic and Mediterranean waters. These observations highlight the relevance of fronts in triggering primary production at DCM level and shaping the characteristic patchiness of the pelagic domain. This gains further relevance considering the inadequacy of optical satellite sensors to observe DCM concentrations at such fine scales.

Keywords

Primary production Glider Mediterranean sea Fronts sub-mesoscale AOU 

Notes

Acknowledgments

This work has been partly funded by the Jerico-TNA program, under the project named FRIPP (FRontal Dynamics Influencing Primary Production), and by the Italian Flagship Project RITMARE. AlborEx experiment was financed by the Perseus project and funded by the EU under FP7 Theme “Oceans of Tomorrow” OCEAN.2011-3 Grant Agreement No. 287600. Arthur Capet is a FNRS researcher under the FNRS BENTHOX project (Convention T.1009.15).

Authors would also like to thank Dr. Stefania Sparnocchia for her precious support as responsible for the JERICO-TNA program, Dr. Marc Toner Tomàs who has efficiently piloted the gliders, Dr. Charles Troupin for providing relevant technical information, Dr. Victoria Hemsley for her precious suggestions about PP algorithm, and Dr. David Roque by helping in bottle data processing.

References

  1. Antoine D, Andrè J, Morel A (1996) Oceanic primary production : Ii. estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob Biogeochem Cycles 10:57–69CrossRefGoogle Scholar
  2. Behrenfeld MJ (2010) Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecol 91:977–989CrossRefGoogle Scholar
  3. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20CrossRefGoogle Scholar
  4. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109 (C12):n/a–n/a. doi: 10.1029/2004JC002378, c12003CrossRefGoogle Scholar
  5. Cetinić I, Perry MJ, D’Asaro E, Briggs N, Poulton N, Sieracki ME, Lee CM (2015) A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment. Biogeosciences 12(7):2179–2194. doi: 10.5194/bg-12-2179-2015, http://www.biogeosciences.net/12/2179/2015/ CrossRefGoogle Scholar
  6. Chiswell SM (2011) Annual cycles and spring blooms in phytoplankton: don’t abandon sverdrup completely. Mar Ecol Prog Ser 443:39–50CrossRefGoogle Scholar
  7. Chiswell SM, Calil PH, Boyd PW (2015) Spring blooms and annual cycles of phytoplankton: a unified perspective. Journal of Plankton Research. doi: 10.1093/plankt/fbv021, http://plankt.oxfordjournals.org/content/early/2015/04/08/plankt.fbv021.abstract, http://plankt.oxfordjournals.org/content/early/2015/04/08/plankt.fbv021.full.pdf+html
  8. Cullen J (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aquat Sci 39(5):791–803. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020369517&partnerID=40&md5=48cddb15fba9964e0cb50004cb0d8e37, cited By 442CrossRefGoogle Scholar
  9. Delgado M, Latasa M, Estrada M (1992) Variability in the size-fractionated distribution of the phytoplankton across the catalan front of the north-west mediterranean. J Plankton Res 14(5):753–771. doi: 10.1093/plankt/14.5.753, https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027038493&partnerID=40&md5=672ea91e91812dd41e89e51c6242c325, cited By 41CrossRefGoogle Scholar
  10. Estrada M (1996) Primary production in the northwestern Mediterranean. Sci Mar 60(Suppl.2):55–64Google Scholar
  11. Franks PJS (2014) Has Sverdrup’s critical depth hypothesis been tested? Mixed layers vs. turbulent layers. ICES Journal of Marine Science: Journal du Conseil. doi: 10.1093/icesjms/fsu175, http://icesjms.oxfordjournals.org/content/early/2014/10/17/icesjms.fsu175.abstract, http://icesjms.oxfordjournals.org/content/early/2014/10/17/icesjms.fsu175.full.pdf+html
  12. Garau B, Ruiz S, Zhang WG, Pascual A, Heslop E, Kerfoot J, Tintoré J (2011) Thermal lag correction on Slocum CTD glider data. J Atmos Ocean Technol 28(9):1065–1071CrossRefGoogle Scholar
  13. Hemsley VS, Smyth TJ, Martin AP, Frajka-Williams E, Thompson AF, Damerell G, Painter SC (2015) Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic. Environ Sci Technol 49(19):11,612–11,621. doi: 10.1021/acs.est.5b00608, pMID: 26301371CrossRefGoogle Scholar
  14. Hodges B, Rudnick D (2004) Simple models of steady deep maxima in chlorophyll and biomass. Deep-Sea Res I(51):999–1015CrossRefGoogle Scholar
  15. Holm-Hansen O, Lorenzen C, Holmes R, Strickland J (1965) Fluorometric determination of chlorophyll. J Cons Perm Int Explor Mar Sci Commun 30:3–15CrossRefGoogle Scholar
  16. Huisman J, van Oostveen P, Weissing F (1999) Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol Oceanogr 44(7):1781–1787CrossRefGoogle Scholar
  17. Lazzara L, Bricaud A, Claustre H (1996) Spectral absorption and fluorescence excitation properties of phytoplanktonic populations at a mesotrophic and an oligotrophic site in the tropical north atlantic (eumeli program). Deep-Sea Res I Oceanogr Res Pap 43(8):1215–1240. doi: 10.1016/0967-0637(96)00057-X, http://www.sciencedirect.com/science/article/pii/096706379600057X CrossRefGoogle Scholar
  18. Lefevre D, Minas H, Minas M, Robinson C, Williams PLB, Woodward E (1997) Review of gross community production, primary production, net community production and dark community respiration in the gulf of lions. Deep-Sea Res II Top Stud Oceanogr 44(3):801–832. doi: 10.1016/S0967-0645(96)00091-4, http://www.sciencedirect.com/science/article/pii/S0967064596000914 CrossRefGoogle Scholar
  19. Lévy M (2008) The modulation of biological production by oceanic mesoscale turbulence. In: Weiss J, Provenzale A (eds) Transport and mixing in geophysical flows, lecture notes in physics, vol 744, springer berlin/heidelberg, pp 219–261Google Scholar
  20. Lévy M, Ferrari R, Franks PJS, Martin AP, Rivière P (2012) Bringing physics to life at the submesoscale. Geophys Res Lett 39(14):L14602. doi: 10.1029/2012GL052756 CrossRefGoogle Scholar
  21. Mahadevan A (2016) The impact of submesoscale physics on primary productivity of plankton. Annu Rev Mar Sci 8(1):161–184. doi: 10.1146/annurev-marine-010814-015912, pMID: 26394203CrossRefGoogle Scholar
  22. Mahadevan A, Tandon A (2006) An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model 14(3-4):241–256CrossRefGoogle Scholar
  23. Mahadevan A, D’Asaro E, Lee C, Perry M (2012) Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 336(6090):54–58CrossRefGoogle Scholar
  24. McGillicuddy JDJ (2016) Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu Rev Mar Sci 8:125–159. doi: 10.1146/annurev-marine-010814-015606, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954231340&partnerID=40&md5=bdf3294183e54575b27558a8b9cef9ef cited By 5CrossRefGoogle Scholar
  25. Mignot A, Claustre H, Uitz J, Poteau A, D’Ortenzio F, Xing X (2014) Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a bio-argo float investigation. Glob Biogeochem Cycles 28(8):856–876. doi: 10.1002/2013GB004781, 2013GB004781CrossRefGoogle Scholar
  26. Moran XAG, Taupier-Letage I, Vazquez-Dominguez E, Ruiz S, Arin L, Raimbault P, Estrada M (2001) Physical-biological coupling in the Algerian basin (sw mediterranean) : influence of mesoscale instabilities on the biomass and production of phytoplankton and bacterioplankton. Deep-Sea Res I(48):405–437CrossRefGoogle Scholar
  27. Morel A, Andrè JM (1991) Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J Geophys Res 96:685–698CrossRefGoogle Scholar
  28. Mousing EA, Richardson K, Bendtsen J, Cetini I, Perry MJ (2016) Evidence of small-scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean. Journal of Ecology pp n/a–n/a. doi: 10.1111/1365-2745.12634
  29. Navarro G, Ruiz J (2013) Hysteresis conditions the vertical position of deep chlorophyll maximum in the temperate ocean. Glob Biogeochem Cycles 27(4):1013–1022. doi: 10.1002/gbc.20093, 2012GB004396CrossRefGoogle Scholar
  30. Oguz T, Macías D, Tintoré J (2014) Impacts of boundary current instabilities on plankton production characteristics of the catalano-balearic sea (western Mediterranean). Ocean Modelling submitted manuscriptGoogle Scholar
  31. Pascual A, Ruiz S, Olita A, Troupin C, Claret M, Casas B, Mourre B, Poulain PM, Tovar-Sanchez A, Capet A, Mason E, Allen J, Mahadevan AJT (2017) A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (alborex). Front Mar Sci 4:39. doi: 10.3389/fmars.2017.00039 CrossRefGoogle Scholar
  32. Platt T (1986) Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing. Deep-Sea Res I Oceanogr Res Pap 33:149–163. doi: 10.1016/0198-0149(86)90115-9 CrossRefGoogle Scholar
  33. Platt T, Caverhill C, Sathyendranath S (1991) Basin-scale estimates of oceanic primary production by remote sensing: the North Atlantic. J Geophys Res 96(C8):15,147–15,159. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026268345&partnerID=40&md5=bfa4f4537db70e6471fa686025861627, cited By 145CrossRefGoogle Scholar
  34. Poulain PM, Barbanti R, Font J, Cruzado A, Millot C, Gertman I, Griffa A, Molcard A, Rupolo V, Le Bras S, Petit de la Villeon L (2007) Medargo: a drifting profiler program in the mediterranean sea. Ocean Sci 3(3):379–395. doi: 10.5194/os-3-379-2007, http://www.ocean-sci.net/3/379/2007/ CrossRefGoogle Scholar
  35. Raimbault P, Coste B, Boulhadid M, Benyahia B (1993) Origin of high phytoplankton concentration in deep chlorophyll maximum (dcm) in a frontal region of southwestern Mediterranean Sea (Algerian current). Deep-Sea Res I(49):791–804CrossRefGoogle Scholar
  36. Rodríguez J, Blanco JM, Jiménez-Gómez F, Echevarría F, Gil J, Rodríguez V, Ruiz J, Bautista B, Guerrero F (1998) Patterns in the size structure of the phytoplankton community in the deep fluorescence maximum of the Alboran Sea (southwestern mediterranean). Deep-Sea Res I Oceanogr Res Pap 45(10):1577–1593. doi: 10.1016/S0967-0637(98)00030-2, http://www.sciencedirect.com/science/article/pii/S0967063798000302 CrossRefGoogle Scholar
  37. Ruiz S, Pascual A, Casas B, Poulain P, Olita A, Troupin C, Torner M, Allen J, Tovar-Sánchez A, Mourre B, Massanet A, Palmer M, Margirier F, Balaguer P, Castilla C, Claret C, Mahadevan A, Tintoré (2015) Report on operation and data analysis from multi-platform synoptic intensive experiment (alborex). Tech. rep., D3.8 Policy-oriented marine Environmental Research in the Southern European SeasGoogle Scholar
  38. Ruiz S, Claret M, Pascual A, Olita A, Troupin C, Capet A, Tovar-Sanchez A, Allen J, Poulain PM, Tintoré J, Mahadevan A (2017) Effects of oceanic meso- and submeso-scale frontal processes 1 on the vertical transport of phytoplankton. Nature Communications, submittedGoogle Scholar
  39. Siswanto E, Ishizaka J, Yokouchi K (2005) Estimating chlorophyll-a vertical profiles from satellite data and the implication for primary production in the Kuroshio front of the east China sea. J Oceanogr 61(3):575–589. doi: 10.1007/s10872-005-0066-7 CrossRefGoogle Scholar
  40. Soetaert K, Petzoldt T (2010) Inverse modelling, sensitivity and monte carlo analysis in r using package fme. J Stat Softw 33(3):1–28. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953156810&partnerID=40&md5=a81a3c884f59de1454e0ffda979fc02a, cited By 97CrossRefGoogle Scholar
  41. Sverdrup H (1953) On conditions for the vernal blooming of phytoplankton. J Cons Int Explor Mer 18:287–295CrossRefGoogle Scholar
  42. Taylor JR, Ferrari R (2011a) Ocean fronts trigger high latitude phytoplankton blooms. Geophys Res Lett 38:L23601. doi: 10.1029/2011GL049312 CrossRefGoogle Scholar
  43. Taylor JR, Ferrari R (2011b) Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol Oceanogr 56(6):2293–2307. doi: 10.4319/lo.2011.56.6.2293 CrossRefGoogle Scholar
  44. Tintoré J, La Violette P, Blade I, Cruzado A (1988) A study of an intense density front in the eastern alboran sea: the Almeria–Oran front. J Phys Oceanogr 18(10):1384–1397CrossRefGoogle Scholar
  45. Varela R, Cruzado A, Tintoré J, Garcia Ladona E (1992) Modelling the deep-chlorophyll maximum: a coupled physical- biological approach. J Mar Res 50(3):441–463. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027010940&partnerID=40&md5=1bf725c26b38a5d441d1b785febbf296, cited By 51CrossRefGoogle Scholar
  46. Videau C, Sournia A, Prieur L, Fiala M (1994) Phytoplankton and primary production characteristics at selected sites in the geostrophic Almeria-Oran front system (sw mediterranean sea). J Mar Syst 5(3):235–250. doi: 10.1016/0924-7963(94)90049-3, http://www.sciencedirect.com/science/article/pii/0924796394900493 CrossRefGoogle Scholar
  47. Zielinski O, Oschlies OLA, Reuter R (2002) Underwater light field and its effect on a one-dimensional ecosystem model at station estoc, north of the canary islands. Deep-Sea Res II Top Stud Oceanogr 49(17):3529–3542. doi: 10.1016/S0967-0645(02)00096-6, http://www.sciencedirect.com/science/article/pii/S0967064502000966 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Antonio Olita
    • 1
  • Arthur Capet
    • 2
  • Mariona Claret
    • 3
  • Amala Mahadevan
    • 4
  • Pierre Marie Poulain
    • 5
  • Alberto Ribotti
    • 1
  • Simón Ruiz
    • 6
  • Joaquín Tintoré
    • 6
    • 7
  • Antonio Tovar-Sánchez
    • 8
  • Ananda Pascual
    • 6
  1. 1.National Research CouncilInstitute for Coastal Marine Environment (IAMC-CNR)OristanoItaly
  2. 2.MASTUniversity of LiègeLiègeBelgium
  3. 3.Joint Institute for Study of the Atmosphere and OceanUniversity of WashingtonSeattleUSA
  4. 4.Woods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.OGSTriesteItaly
  6. 6.IMEDEA(CSIC-UIB)EsporlesSpain
  7. 7.SOCIBMallorcaSpain
  8. 8.ICMANPuerto RealSpain

Personalised recommendations