Ocean Dynamics

, Volume 67, Issue 3–4, pp 513–533 | Cite as

A review of the LATEX project: mesoscale to submesoscale processes in a coastal environment

  • Anne A. PetrenkoEmail author
  • Andrea M. Doglioli
  • Francesco Nencioli
  • Marion Kersalé
  • Ziyuan Hu
  • Francesco d’Ovidio
Part of the following topical collections:
  1. Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016


The main objective of the LAgrangian Transport EXperiment (LATEX) project was to study the influence of coastal mesoscale and submesoscale physical processes on circulation dynamics, cross-shelf exchanges, and biogeochemistry in the western continental shelf of the Gulf of Lion, Northwestern Mediterranean Sea. LATEX was a five-year multidisciplinary project based on the combined analysis of numerical model simulations and multi-platform field experiments. The model component included a ten-year realistic 3D numerical simulation, with a 1 km horizontal resolution over the gulf, nested in a coarser 3 km resolution model. The in situ component involved four cruises, including a large-scale multidisciplinary campaign with two research vessels in 2010. This review concentrates on the physics results of LATEX, addressing three main subjects: (1) the investigation of the mesoscale to submesoscale processes. The eddies are elliptic, baroclinic, and anticyclonic; the strong thermal and saline front is density compensated. Their generation processes are studied; (2) the development of sampling strategies for their direct observations. LATEX has implemented an adaptive strategy Lagrangian tool, with a reference software available on the web, to perform offshore campaigns in a Lagrangian framework; (3) the quantification of horizontal mixing and cross-shelf exchanges. Lateral diffusivity coefficients, calculated in various ways including a novel technique, are in the range classically encountered for their associated scales. Cross-shelf fluxes have been calculated, after retrieving the near-inertial oscillation contribution. Further perspectives are discussed, especially for the ongoing challenge of studying submesoscale features remotely and from in situ data.


Mesoscale Submesoscale Lagrangian Gulf of Lion Northwestern mediterranean sea Cross-shelf flux 



The LATEX project was supported by the programs LEFE/IDAO and LEFE/CYBER of the INSU-Institut National des Sciences de l’Univers and by the Region PACA-Provence Alpes Côte d’Azur. The PIs of the project were A. Petrenko for the physics component and F. Diaz for the biogeochemical component. The chief scientists were A. Petrenko on board the R/V Téthys II for Latex00, Latex07, Latex08, Latex09, and Latex10 and B. Quéguiner on board the R/V Le Suroît for Latex10. The scientist in charge of the tracer release was S. Blain. M. Kersalé and Z.Y. Hu were financed by MENRT Ph.D. grants. F.Nencioli acknowledges support from the FP7 Marie Curie Actions of the European Commission, via the Intra-European Fellowship (FP7-PEOPLE-IEF-2011), project “Lyapunov Analysis in the COaSTal Environment” (LACOSTE-299834). We thank I. Dekeyser for his support and useful discussions. We have appreciated that Claude Estournel and Patrick Marsaleix provided us the initial Symphonie code and helped us along our configuration development. We acknowledge the MFSTEP program for OGCM outputs. Meteorological and AVHRR data were supplied by Météo-France. The DT-INSU is thanked for the treatment of the thermosalinograph data. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from CNES, that also financed the post-doc fellowship of Jérome Bouffard. The MODIS Aqua data were supplied by the Distributed Active Archive Center at NASA Goddard Space Flight Center and made possible by the MODIS Project. We thank the crews and technicians of the R/V Le Suroît and the R/V Téthys II, the DT-INSU and all the LATEX collaborators for their assistance at sea or during the project. A special thanks goes to, in alphabetical order, Anne Desnues, Jean-Luc Fuda, Nicolas Grima, Thierry Labasque, Deny Malengros, Peggy Rimmelin, Gilles Rougier, and Anna Roumyantseva, for their work on the data collection and Lagrangian strategy, as well as Emmanuel Bosc for some chlorophyll-a satellite products.


  1. Abraham E, Law C, Boyd P, Lavender S, Maldonado M, Bowie A (2000) Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407:727–730CrossRefGoogle Scholar
  2. Allou A, Forget P, Devenon JL (2010) Submesoscale vortex strucures at the entrance of the Gulf of Lions in the Northwestern Mediterranean Sea. Cont Shelf Res 30:724–732CrossRefGoogle Scholar
  3. Auger PA, Diaz F, Ulses C, Estournel C, Neveux J, Joux F, Pujo-Pay M, Naudin JJ (2011) Functioning of the planktonic ecosystem of the Rhone River plume (NW Mediterranean) during spring and its impact on the carbon export: a field data and 3-D modelling combined approach. Biogeosciences 24(6):9039– 9116Google Scholar
  4. Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1997) Predictability in the large: an extension of the concept of Lyapunov exponent. J Phys A 30(1):1CrossRefGoogle Scholar
  5. Badin G (2013) Surface semi-geostrophic dynamics in the ocean. Geophys Astrophys Fluid Dyn 107(5):526–540CrossRefGoogle Scholar
  6. Baklouti M, Diaz F, Pinazo C, Faure V, Quéguiner B (2006a) Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Prog Oceanogr 71(1):1–33Google Scholar
  7. Baklouti M, Faure V, Pawlowski L, Sciandra A (2006b) Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular numerical tool (eco3m) dedicated to biogeochemical modelling. Prog Oceanogr 71(1):34–58Google Scholar
  8. Barrier N, Petrenko AA, Ourmières Y (2016) Strong intrusions of the Northern Mediterranean Current on the eastern Gulf of Lion: insights from in-situ observations and high resolution numerical modelling. Ocean Dyn 66(3):313–327CrossRefGoogle Scholar
  9. Bauer JE, Druffel ERM (1998) Ocean margins as a significant source of organic matter to the deep open ocean. Nature 392:482–485CrossRefGoogle Scholar
  10. Beron Vera FJ, Olascoaga MJ, Goni GJ (2008) Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys Res Lett 35(12)Google Scholar
  11. Biscaye PE (1994) Shelf edge exchange processes in the southern middle atlantic bight: Seep-ii. Deep-Sea Res I 41(2-3):229–230CrossRefGoogle Scholar
  12. Bosse A, Testor P, Houpert L, Damien P, Prieur L, Hayes D, Taillandier V, Durrieu de Madron X, d’Ortenzio F, Coppola L, Karstensen J, Mortier L (2016) Scales and dynamics of submesoscale coherent vortices formed by deep convection in the northwestern mediterranean sea. J Geophys Res 121(10):7716–7742CrossRefGoogle Scholar
  13. Bouffard J, Nencioli F, Escudier R, Doglioli AM, Petrenko AA, Pascual A, Poulain PM, Elhmaidi D (2014) Lagrangian analysis of satellite-derived currents: application to the North Western Mediterranean coastal dynamics. Adv Space Res 53(5):788–801CrossRefGoogle Scholar
  14. Bouffard J, Vignudelli S, Herrmann M, Lyard F, Marsaleix P, Ménard Y, Cipollini P (2008) Comparison of ocean dynamics with a regional circulation model and improved altimetry in the North-western Mediterranean. In: Terr. Atmos. Ocean. Sci., vol 19, pp 117–133Google Scholar
  15. Brink KH, Cowles TJ (1991) The Coastal Transition Zone program. J Geophys Res 96(C8):14637–14647CrossRefGoogle Scholar
  16. Broche P, Devenon J-L, Forget P, de Maistre J-C, Naudin J-J, Cauwet G (1998) Experimental study of the Rhone plume. Part I: physics and dynamics. Oceanol Acta 21(6):725–738Google Scholar
  17. Burchard H, Burchard R (2008) A dynamic equation for the potential energy anomaly for analysing mixing and stratification in estuaries and coastal seas. Estuar Coast Shelf Sci 77(4):679–687CrossRefGoogle Scholar
  18. Burchard H, Craig PD, Gemmrich JR, van Haren H, Mathieu P -P, Meier HM, Smith WAMN, Prandke H, Rippeth TP, Skyllingstad ED et al (2008) Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. J Phys Oceanogr 76(4):399–442Google Scholar
  19. Campbell RFD, Hu Z, Doglioli A, Petrenko A, Dekeyser I (2013) Nutrients and plankton spatial distributions induced by a coastal eddy in the Gulf of Lion. Insights from a numerical model. Prog Oceanogr 109:47–69CrossRefGoogle Scholar
  20. Canals M, Puig P, de Madron XD, Heussner S, Palanques A, Fabres J (2006) Flushing submarine canyons. Nature 444(7117):354–7Google Scholar
  21. Capet X, McWilliams J, Molemaker M, Shchepetkin A (2008a) Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J Phys Oceanogr 38 (1):29–43Google Scholar
  22. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin A (2008b) Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J Phys Oceanogr 38(1):44–64Google Scholar
  23. Costa A, Doglioli A, Marsaleix P, Petrenko A (2016) Comparison of in situ microstructure measurements to different turbulence closure schemes in a 3-D numerical ocean circulation model. Ocean Model, (submitted)Google Scholar
  24. Cotté C, d’Ovidio F, Chaigneau A, Lévy M, Taupier Letage I, Mate B, Guinet C (2011) Scale-dependent interactions of Mediterranean whales with marine dynamics. Limnol Oceanogr 106(20):219– 232CrossRefGoogle Scholar
  25. Crawford WR (2002) Physical characteristics of Haida Eddies. J Oceanogr 58(5):703–713CrossRefGoogle Scholar
  26. Csanady G (1982) Circulation in the coastal ocean. D.Reidel Publishing Company Kluwer Group. Dordrech, HollandCrossRefGoogle Scholar
  27. Cushman-Roisin B (1994) Introduction to geophysical fluid dynamics. Prentice HallGoogle Scholar
  28. De Boer GJ, Pietrzak JD, Winterwerp JC (2008) Using the potential energy anomaly equation to investigate tidal straining and advection of stratification in a region of freshwater influence. Ocean Model 22:1–11CrossRefGoogle Scholar
  29. De Monte S, D’Ovidio F, Cotté C, Lévy M, Le Corre M, Weimerskirch (2012) Frigatebird behaviour at the ocean-atmosphere interface: integrating animal behaviour with multisatellite data. J. R. Soc. InterfaceGoogle Scholar
  30. Di Lorenzo E, Foreman MGG, Crawford WR (2005) Modelling the generation of Haida Eddies. Deep-Sea Res II 52:853–873CrossRefGoogle Scholar
  31. Doglioli A (2015) OSCAHR cruise, RV Téthys II, doi: 10.17600/15008800
  32. Doglioli A, Nencioli F, Petrenko AA, Fuda J-L, Rougier G, Grima N (2013) A software package and hardware tools for in situ experiments in a Lagrangian reference frame. J Atmos Ocean Tech 30(8)Google Scholar
  33. Doglioli AM, Blanke B, Speich S, Lapeyre G (2007) Tracking coherent structures in a regional ocean model with wavelet analysis: application to Cape Basin Eddies. J Geophys Res 112Google Scholar
  34. d’Ovidio F, De Monte S, Alvain S, Dandonneau Y, Lévy M (2010) Fluid dynamical niches of phytoplankton types. Proc Natl Acad Sci USA 107(43):18366–18370CrossRefGoogle Scholar
  35. d’Ovidio F, Della Penna A, Trull TW, Nencioli F, Pujol M-I, Rio M-H, Park Y-H, Cotté C, Zhou M, Blain S (2015) The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau. Biogeosciences 12(19):5567–5581CrossRefGoogle Scholar
  36. d’Ovidio F, Fernéndez V, Hernández-García E, López C (2004) Mixing structures in the mediterranean sea from finite-size lyapunov exponents. Geophys Res Lett 31:L17203Google Scholar
  37. Durrieu de Madron X, Houpert L, Puig P, Sanchez-Vidal A, Testor P, Bosse A, Estournel C, Somot S, Bourrin F, Bouin MN (2012) Interaction of dense shelf water cascading and open-sea convection in the northwestern mediterranean during winter. Geophys Res Lett 40(7):1379–1385CrossRefGoogle Scholar
  38. Durrieu de Madron X, Zervakis V, Theocharis A, Georgopoulos D (2005) Comments on cascades of dense water around the world ocean. Prog Oceanogr 64(1):83–90CrossRefGoogle Scholar
  39. Estournel C, Durrieu de Madron X, Marsaleix P, Auclair F, Julliand C, Vehil R (2003) Observation and modeling of the winter coastal oceanic circulation in the Gulf of Lion under wind conditions influenced by the continental orography (FETCH experiment). J Geophys Res 108(C3)Google Scholar
  40. Ferrari R (2011) A frontal challenge for climate models. Science 332(6027):316–7CrossRefGoogle Scholar
  41. Flament P, Armi L, Washburn L (1985) The evolving structure of an upwelling filament. J Geophys Res 90(C6):11765–11778CrossRefGoogle Scholar
  42. Flexas MM, Durrieu de Madron X, Garcia MA, Canals M, Arnau P (2002) Flow variability in the Gulf of Lions during the MATER HFF experiment (March-May 1997). J Mar Syst 33-34:197– 214CrossRefGoogle Scholar
  43. Garreau P, Garnier V, Schaeffer A (2011) Eddy resolving modelling of the Gulf of Lions and Catalan Sea. Ocean Dyn 61:991– 1003CrossRefGoogle Scholar
  44. Gaspar P, Grégoris Y, Lefevre J-M (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at Station Papa and long-term upper ocean study site. J Geophys Res 95:179–193Google Scholar
  45. Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434CrossRefGoogle Scholar
  46. Grantham BA, Chan F, Nielsen KJ, Fox DS, Barth JA, Huyer A, Lubchenco J, Menge BA (2004) Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–754CrossRefGoogle Scholar
  47. Griffa A, Kirwan A, Mariano AJ, Özgökmen T, Rossby HT (2007) Lagrangian analysis and prediction of coastal and ocean dynamics. Cambridge University PressGoogle Scholar
  48. Gustafsson Ö, Buesseler KO, Geyer WR, Moran SB, Gschwend PM (1998) An assessment of the relative importance of horizontal and vertical transport of particle-reactive chemicals in the coastal ocean. Cont Shelf Res 18(7):805–829CrossRefGoogle Scholar
  49. Haller G (2011) A variational theory of hyperbolic Lagrangian Coherent Structures. Phys D 240(7):574–598CrossRefGoogle Scholar
  50. Haller G, Yuan G (2000) Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys D 147:352–370CrossRefGoogle Scholar
  51. Haza AC, Özgökmen TM, Griffa A, Molcard A, Poulain P-M, Peggion G (2010) Transport properties in small-scale coastal flows: relative dispersion from VHF radar measurements in the Gulf of La Spezia. Ocean Dyn 60(4):861–882CrossRefGoogle Scholar
  52. Haza AC, Poje AC, Özgökmen TM, Martin P (2008) Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Model 22(1-2):48–65CrossRefGoogle Scholar
  53. Holtermann PL, Umlauf L, Tanhua T, Schmale O, Rehder G, Waniek JJ (2012) The Baltic Sea Tracer Release Experiment: 1. Mixing rates. J Geophys Res 117(C1)Google Scholar
  54. Hopkins J, Sharples J, Huthnance JM (2012) On-shelf transport of slope water lenses within the seasonal pycnocline. Geophys Res Lett 39(8):85–93CrossRefGoogle Scholar
  55. Hoskins B (1982) The mathematical theory of frontogenesis. Annu Rev Fluid Mech 14:31–151CrossRefGoogle Scholar
  56. Hu ZY, Doglioli AM, Petrenko AA, Marsaleix P, Dekeyser I (2009) Numerical simulations of eddies in the Gulf of Lion. Ocean Model 28(4):203 – 208CrossRefGoogle Scholar
  57. Hu ZY, Petrenko AA, Doglioli AM, Dekeyser I (2011a) Numerical study of eddy generation in the western part of the Gulf of Lion. J Geophys Res 116Google Scholar
  58. Hu ZY, Petrenko AA, Doglioli AM, Dekeyser I (2011b) Study of mesoscale anticyclonic eddy in the western part of the Gulf of Lion. J Mar Syst 88:3–11Google Scholar
  59. Huthnance J (1995) Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Prog Oceanogr 35(4):353–431CrossRefGoogle Scholar
  60. Huthnance JM, Holt JT, Wakelin SL (2009) Deep ocean exchange with west-european shelf seas. Ocean Sci 5(4):621–634CrossRefGoogle Scholar
  61. Huthnance JM, Van Aken HM, White M, Barton ED, Le Cann B, Ferreira Coelho E, Alvarez Fanjul E, Miller P, Vitorino J (2002) Ocean margin exchange—water flux estimates. J Mar Syst 32(1-3):107–137Google Scholar
  62. Johnson J, Chapman P (2011) Preface Deep Ocean Exchange with the Shelf (DOES). Ocean Sci 7(1)Google Scholar
  63. Kersalé M, Doglioli AM, Petrenko AA, Dekeyser I, Nencioli F (2013) Physical characteristics and dynamics of the coastal Latex09 Eddy derived from in situ data and numerical modeling. J Geophys Res 118:1–11CrossRefGoogle Scholar
  64. Kersalé M, Petrenko AA, Doglioli AM, Nencioli F, Bouffard J, Blain S, Diaz F, Labasque T, Quéguiner B, Dekeyser I (2015) Lateral diffusivity coefficients from the dynamics of a SF6 patch in a coastal environment. J Mar Syst 153 :42–54CrossRefGoogle Scholar
  65. Kirincich AR, Barth JA (2009) Time-varying across-shelf ekman transport and vertical eddy viscosity on the inner shelf. J Phys Oceanogr 39(3):602CrossRefGoogle Scholar
  66. Law C, Watson A, Liddicoat M (1994) Automated vacuum analysis of sulphur hexafluoride in seawater: derivation of the atmospheric trend (1970–1993) and potential as a transient tracer. Mar Chem 48(1):57–69CrossRefGoogle Scholar
  67. Ledwell JR, Watson AJ (1991) The Santa-Monica Basin tracer experiment—a study of dyapycnal and isopycnal mixing. J Geophys Res 96(C5):8695–8718CrossRefGoogle Scholar
  68. Ledwell JR, Watson AJ, Law CS (1998) Mixing of a tracer in the pycnocline. J Geophys Res 103 (C10):21499–21529CrossRefGoogle Scholar
  69. Lehahn Y, d’Ovidio F, Lévy M, Heifetz E (2007) Stirring of the northeast atlantic spring bloom: a lagrangian analysis based on multisatellite data. J Geophys Res 112(C08005)Google Scholar
  70. Lévy M., Ferrari R, Franks PJ, Martin AP, Rivière P (2012) Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39(14)Google Scholar
  71. Lumpkin R, Elipot S (2010) Surface drifter pair spreading in the North Atlantic. J Geophys Res 115Google Scholar
  72. MacFadyen A, Hickey BM (2010) Generation and evolution of a topographically linked, mesoscale eddy under steady and variable wind-forcing. Cont Shelf Res 30(13):1387–1402CrossRefGoogle Scholar
  73. MacFadyen A, Hickey BM, Cochlan WP (2008) Influences of the Juan de Fuca Eddy on circulation, nutrients, and phytoplankton production in the northern California Current System. J Geophys Res 113(C08008)Google Scholar
  74. Mahadevan A (2016) The impact of submesoscale physics on primary productivity of plankton. Ann Rev Mar Sci 8(1):161–184CrossRefGoogle Scholar
  75. Mancho AM, Hernandez Garcia E, Small D, Wiggins S, Fernandez V (2008) Lagrangian transport through an ocean front in the northwestern Mediterranean sea. J Phys Oceanogr 38(6):1222–1237CrossRefGoogle Scholar
  76. Marsaleix P, Auclair F, Estournel C (2006) Considerations on open boundary conditions for regional and coastal ocean models. J Atmos Ocean Technol 23:1604–1613CrossRefGoogle Scholar
  77. Marsaleix P, Auclair F, Floor J, Herrmann M, Estournel C, Pairaud I, Ulses C (2008) Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Model 20:61–89CrossRefGoogle Scholar
  78. McWilliams JC, Brown ED, Bryden HL, Ebbesmeyer CC, Elliott BA, Heinmiller RH, Lien Hua B, Leaman KD, Lindstrom EJ, Luyten JR, McDowell SE, Breckner Owens W, Perkins H, Price JF, Regier L, Riser SC, Rossby HT, Sanford TB, Shen CY, Taft BA, Van Leer JC (1983) The local dynamics of Eddies in the Western North atlantic. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 92–113Google Scholar
  79. Melson A, Meyers SD, Hurlburt HE, Metzger EJ, O’Brien JJ (1999) ENSO effects on Gulf of Alaska eddies. Earth Interact 3:003Google Scholar
  80. Millot C (1979) Wind induced upwellings in the Gulf of Lions. Oceanol Acta 2:261–274Google Scholar
  81. Millot C (1982) Analysis of upwelling in the Gulf of Lions—hydrodynamics of semi-enclosed seas: Proceedings of the 13th International liège Colloquium on Ocean Hydrodynamics, vol 34. Elsevier Oceanogr. Ser. Amsterdam, The NetherlandsGoogle Scholar
  82. Millot C (1990) The Gulf of Lions’ hydrodynamics. Cont Shelf Res 10:885–894CrossRefGoogle Scholar
  83. Millot C, Crépon M (1981) Inertial oscillations on the continental shelf of the Gulf of Lions. J Phys Oceanogr 11:639–657CrossRefGoogle Scholar
  84. Millot C, Taupier-Letage I (2005) Additional evidence of LIW entrainment across the Algerian subbasin by mesoscale eddies and not by a permanent westward flow. Prog Oceanogr 66(2):231–250CrossRefGoogle Scholar
  85. Millot C, Wald L (1980) The effect of Mistral wind on the Ligurian current near Provence. Oceanol Acta 3(4):399–402Google Scholar
  86. Mitchelson-Jacob G, Sundby S (2001) Eddies of Vestfjorden, Norway. Cont Shelf Res 21(16-17):1901–1918CrossRefGoogle Scholar
  87. Moore II T, Matear R, Marra J, Clementson L (2007) Phytoplankton variability off the western australian coast: mesoscale eddies and their role in cross-shelf exchange. Deep-Sea Res II 54(8-10):943–960CrossRefGoogle Scholar
  88. Moutin T, Bonnet S (2015) OUTPACE cruise, RV L’Atalante. doi: 10.17600/15000900
  89. Nagai T, Gruber N, Frenzel H, Lachkar Z, McWilliams JC, Plattner G-K (2015) Dominant Role of Eddies and Filaments in the Offshore Transport of Carbon and Nutrients in the California Current System. J Geophys Res 120Google Scholar
  90. Naudin JJ, Cauwet G, Chretiennot-Dinet M-J, Deniaux B, Devenon J-L, Pauc H (1997) River discharge and wind influence upon particulate transfer at the land–ocean interaction: case study of the Rhône river plume. Estuar Coast Shelf Sci 45(3):303–316CrossRefGoogle Scholar
  91. Nencioli F, d’Ovidio F, Doglioli A, Petrenko A (2013) In situ estimates of submesoscale horizontal eddy diffusivity across an ocean front. J Geophys Res 118(12):7066–7080CrossRefGoogle Scholar
  92. Nencioli F, d’Ovidio F, Doglioli AM, Petrenko AA (2011) Surface coastal circulation patterns by in-situ detection of Lagrangian coherent structures. Geophys Res Lett 38(L17604)Google Scholar
  93. Nencioli F, Kuwahara VS, Dickey TD, Rii YM, Bidigare RR (2008) Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawai’i : Cyclone Opal observations during E-FLUX III. Deep-Sea Res II 55(10-13):1252–1274CrossRefGoogle Scholar
  94. Nencioli F, Petrenko AA, Doglioli AM (2016) Diagnosing cross-shelf transport along an ocean front: an observational case study in the Gulf of Lion. J Geophys Res (121):7218–7243Google Scholar
  95. Nof D (1999) Strange encounters of eddies with walls. J Mar Res 57(5):739–761CrossRefGoogle Scholar
  96. Olascoaga MJ, Rypina II, Brown MG, Beron Vera FJ, Kocak H, Brand LE, Halliwell GR, Shay LK (2006) Persistent transport barrier on the West Florida Shelf. Geophys Res Lett 33(22)Google Scholar
  97. Petrenko AA (2003) Variability of circulation features in the Gulf of Lion NW Mediterranean Sea. Importance of inertial currents. Oceanol Acta 26:323–338CrossRefGoogle Scholar
  98. Petrenko AA (2007) Latex00 cruise in the Gulf of Lion, RV Téthys II,  10.17600/7450130
  99. Petrenko AA (2008) Latex08 cruise in the Gulf of Lion, RV Téthys II,  10.17600/8450140
  100. Petrenko AA (2009) Latex09 cruise in the Gulf of Lion, RV Téthys II,  10.17600/9450140
  101. Petrenko AA (2010) Latex10 cruise in the Gulf of Lion, RV Téthys II,  10.17600/10450150
  102. Petrenko AA, Dufau C, Estournel C (2008) Barotropic eastward currents in the western Gulf of Lion, northwestern Mediterranean Sea, during stratified conditions. J Mar Syst 74(1-2):406–428CrossRefGoogle Scholar
  103. Petrenko AA, Kersalé M, Nencioli F, Gatti J, Doglioli AM, Dekeyser I (2013) Coastal circulation in the Gulf of Lion, the influence of mesoscale processes on interregional exchanges. 40th CIESM Congress proceedingsGoogle Scholar
  104. Petrenko AA, Leredde Y, Marsaleix P (2005) Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: in situ and modeling data. Cont Shelf Res 25:7–27CrossRefGoogle Scholar
  105. Pinardi N (2003) The Mediterranean ocean forcasting system : first phase of implementation (1998-2001). Ann Geophys 21:3–20CrossRefGoogle Scholar
  106. Quéguiner B (2011) KEOPS 2 cruise, RV Marion Dufresne,  10.17600/11200050
  107. Reverdin G, Morisset S, Marié L, Bourras D, Sutherland G, Ward B, Salvador J, Font J, Cuypers Y, Centurioni L, Hormann V, Koldziejczyk N, Boutin J, D’Ovidio F, Nencioli F, Martin N, Diverres D, Alory G, Lumpkin R (2015) Surface salinity in the North Atlantic subtropical gyre during the STRASSE/SPURS summer 2012 cruise. Oceanography 28:114–123CrossRefGoogle Scholar
  108. Robinson AR (1983) Overview and summary of Eddy science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–15Google Scholar
  109. Roughan M, Garfield N, Largier J, Dever E, Dorman C, Peterson D, Dorman J (2006) Transport and retention in an upwelling region: the role of across-shelf structure. Deep-Sea Res II 53(25–26):2931–2955CrossRefGoogle Scholar
  110. Ruiz S, Pascual A, Mahadevan A, Claret M, Olita A, Troupin C, Tintoré J, Poulain P, Tovar-Sánchez A, Mourre B, Capet A (2016) Intense ocean frontogenesis inducing submesoscale processes and impacting biochemistry 48th International liège Colloquium on Ocean Dynamics, Liège, Belgium. oral presGoogle Scholar
  111. Schaeffer A, Molcard A, Forget P, Fraunié P, Garreau P (2011) Generation mechanisms for mesoscale eddies in the Gulf of Lions : radar observation and modeling. Ocean Dyn 61:1587– 1609CrossRefGoogle Scholar
  112. Schroeder K, Haza AC, Griffa A, Özgökmen TM, Poulain P, Gerin R, Peggion G, Rixen M (2011) Relative dispersion in the Liguro-Provencal basin: from sub-mesoscale to mesoscale. Deep-Sea Res I 58 (3):209–228CrossRefGoogle Scholar
  113. Shcherbina AY, Sundermeyer MA, Kunze E, D’Asaro E, Badin G, Birch D, Brunner-Suzuki A-MEG, Callies J, Kuebel Cervantes BT, Claret M, Concannon B, Early J, Ferrari R, Goodman L, Harcourt RR, Klymak JM, Lee CM, Lelong M-P, Levine MD, Lien R-C, Mahadevan A, McWilliams JC, Molemaker MJ, Mukherjee S, Nash JD, Özgökmen T, Pierce SD, Ramachandran S, Samelson RM, Sanford TB, Shearman RK, Skyllingstad ED, Smith KS, Tandon A, Taylor JR, Terray EA, Thomas LN, Ledwell JR (2015) The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean. Bull Am Meteorol Soc 96(8):1257–1279CrossRefGoogle Scholar
  114. Ssalto/Duacs User Handbook CNES (2010) (M)SLA and (M)ADT near-real time and delayed time products, CNES (Centre National d-Etudes Spatiales). Technical report. Ref. cLS-DOS-NT-06.034Google Scholar
  115. Staneva JV, Dietrich DE, Stanev EV, Bowman MJ (2001) Rim current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model. J Mar Syst 31(1):137–157CrossRefGoogle Scholar
  116. Suthers IM, Young JW, Baird ME, Roughan M, Everett JD, Brassington GB, Byrne M, Condie SA, Hartog JR, Hassler CS (2011) The strengthening East Australian Current, its eddies and biological effects—an introduction and overview. Deep-Sea Res II 58(5):538–546CrossRefGoogle Scholar
  117. Tew Kai E, Rossi V, Sudre J, Weimerskirch H, Lopez C, Hernandez Garcia E, Marsac F, Garcon V (2009) Top marine predators track Lagrangian coherent structures. Proc Natl Acad Sci USA 106(20):8245–8250CrossRefGoogle Scholar
  118. Thomas LN, Tandon A, Mahadevan A (2008) Submesoscale processes and dynamics. American Geophysical Union, pp 17–38Google Scholar
  119. Wanninkhof R, Hitchcock G, Wiseman WJ, Vargo G, Ortner PB, Asher W, Ho DT, Schlosser P, Dickson M-L, Masserini R et al (1997) Gas exchange, dispersion, and biological productivity on the west Florida shelf: results from a Lagrangian tracer study. Geophys Res Lett 24(14):1767–1770CrossRefGoogle Scholar
  120. Waugh DW, Abraham E (2008) Stirring in the global surface ocean. Geophys Res Lett 35(20)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Anne A. Petrenko
    • 1
    Email author
  • Andrea M. Doglioli
    • 1
  • Francesco Nencioli
    • 2
  • Marion Kersalé
    • 3
  • Ziyuan Hu
    • 4
  • Francesco d’Ovidio
    • 5
  1. 1.Aix Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO)MarseilleFrance
  2. 2.Remote Sensing GroupPlymouth Marine LaboratoryPlymouthUK
  3. 3.Department of Oceanography, Marine Research InstituteUniversity of Cape TownRondeboschSouth Africa
  4. 4.Jiaozhou Bay Marine Ecosystem Research Station, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  5. 5.Sorbonne Université (UPMC, Paris 6)/CNRS/IRD/MNHN, Laboratoire d’Océanographie et du Climat (LOCEAN), Institut Pierre Simon Laplace (IPSL)ParisFrance

Personalised recommendations