Ocean Dynamics

, Volume 67, Issue 2, pp 253–262 | Cite as

One-dimensional ocean model with three types of vertical velocities: a case study in the South China Sea

Article
Part of the following topical collections:
  1. Topical Collection on the 8th International Workshop on Modeling the Ocean (IWMO), Bologna, Italy, 7-10 June 2016

Abstract

In this research, three vertical velocities were included in a one-dimensional (1D) ocean model for a case study of the SouthEast Asian Time-Series Study station in the South China Sea. The vertical velocities consisted three processes, i.e., Ekman pumping (WEK), Eddy pumping (WEP), and the background upwelling (WBK). The quantification of WEK followed the classical Ekman pumping theory. The WEP, whose underlying mechanism was consistent with the baroclinic modes (dominated by the first mode), was quantified by Argo observation and altimetry data. The WBK, related with the background circulation, was estimated from the long-term heat budget balance. The skill assessment indicated that the case with all three processes performed best. The study confirmed the capability of the 1D model with three types of vertical velocities, which can reproduce the general structure and variation of temperature in vertical direction.

Keywords

South China Sea SEATS station One-dimensional model Vertical velocity Ekman pumping 

References

  1. Chen C-C, Shiah F-K, Chung S-W, Liu K-K (2006) Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. J Mar Syst 59:97–110. doi:10.1016/j.jmarsys.2005.09.002 CrossRefGoogle Scholar
  2. Chen C-TA, Wang S-L, Wang B-J, Pai S-C (2001) Nutrient budgets for the South China Sea basin. Mar Chem 75:281–300. doi:10.1016/S0304-4203(01)00041-X CrossRefGoogle Scholar
  3. Chifflet M, Andersen V, Prieur L, Dekeyser I (2001) One-dimensional model of short-term dynamics of the pelagic ecosystem in the NW Mediterranean Sea: effects of wind events. J Mar Syst 30:89–114. doi:10.1016/S0924-7963(01)00040-9 CrossRefGoogle Scholar
  4. Cushman-Roisin B, Beckers JM (2011) Introduction to geophysical fluid dynamicGoogle Scholar
  5. Dai M et al (2009) Excess total organic carbon in the intermediate water of the South China Sea and its export to the North Pacific. Geochemistry Geophysics Geosystems 10. doi:10.1029/2009gc002752
  6. Gan J, Cheung A, Guo X, Li L (2009) Intensified upwelling over a widened shelf in the northeastern South China Sea. J Geophys Res 114. doi:10.1029/2007jc004660
  7. Gill AE (1982) Atmosphere-ocean dynamics vol 30. Academic pressGoogle Scholar
  8. Hood RR, Bates NR, Capone DG, Olson DB (2001) Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. Deep-Sea Res II Top Stud Oceanogr 48:1609–1648. doi:10.1016/S0967-0645(00)00160-0 CrossRefGoogle Scholar
  9. Isobe A, Namba T (2001) The circulation in the upper and intermediate layers of the South China Sea. J Oceanogr 57:93–104CrossRefGoogle Scholar
  10. Jin M, Deal CJ, Wang J, Tanaka N, Ikeda M (2006) Vertical mixing effects on the phytoplankton bloom in the southeastern Bering Sea midshelf. J Geophys Res 111. doi:10.1029/2005jc002994
  11. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  12. Lévy M, Mémery L, André J-M (1998) Simulation of primary production and export fluxes in the Northwestern Mediterranean Sea. J Mar Res 56:197–238CrossRefGoogle Scholar
  13. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–404CrossRefGoogle Scholar
  14. Li QP, Wang Y, Dong Y, Gan J (2015) Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio current. J Geophys Res Oceans 120:3913–3936. doi:10.1002/2014JC010609 CrossRefGoogle Scholar
  15. Liao EH, Jiang YW, Li L, Hong HS, Yan XH (2013) The cause of the 2008 cold disaster in the Taiwan Strait. Ocean Model 62:1–10. doi:10.1016/j.ocemod.2012.11.004 CrossRefGoogle Scholar
  16. Lin X, Yan X-H, Jiang Y, Zhang Z (2016) Performance assessment for an operational ocean model of the Taiwan Strait. Ocean Model 102:27–44. doi:10.1016/j.ocemod.2016.04.006 CrossRefGoogle Scholar
  17. Liu G, Chai F (2009) Seasonal and interannual variability of primary and export production in the South China Sea: a three-dimensional physical-biogeochemical model study. ICES J Mar Sci 66:420–431. doi:10.1093/icesjms/fsn219 CrossRefGoogle Scholar
  18. Liu KK et al (2013) Inter-annual variation of chlorophyll in the northern South China Sea observed at the SEATS Station and its asymmetric responses to climate oscillation. Biogeosciences 10:7449–7462. doi:10.5194/bg-10-7449-2013 CrossRefGoogle Scholar
  19. Liu Q, Jia Y, Liu P, Wang Q, Chu PC (2001) Seasonal and intraseasonal thermocline variability in the central south China Sea. Geophys Res Lett 28:4467–4470. doi:10.1029/2001gl013185 CrossRefGoogle Scholar
  20. Liu WT, Katsaros KB, Businger JA (1979) Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36:1722–1735CrossRefGoogle Scholar
  21. Lu W, Yan X-H, Jiang Y (2015) Winter bloom and associated upwelling northwest of the Luzon Island: a coupled physical-biological modeling approach. J Geophys Res Oceans 120:533–546. doi:10.1002/2014JC010218 CrossRefGoogle Scholar
  22. Mellor GL (2001) One-dimensional, ocean surface layer modeling: a problem and a solution. J Phys Oceanogr 31:790–809CrossRefGoogle Scholar
  23. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875. doi:10.1029/RG020i004p00851 CrossRefGoogle Scholar
  24. Munk WH (1966) Abyssal recipes. Deep Sea Research and Oceanographic Abstracts 13:707–730. doi:10.1016/0011-7471(66)90602-4 CrossRefGoogle Scholar
  25. Pascual A, Ruiz S, Buongiorno Nardelli B, Guinehut S, Iudicone D, Tintoré J (2015) Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges. Geophys Res Lett 42:441–449. doi:10.1002/2014gl062569 CrossRefGoogle Scholar
  26. Qu T (2002) Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait. Acta Ocean Sin 21:175–185Google Scholar
  27. Qu T, Mitsudera H, Yamagata T (2000) Intrusion of the North Pacific waters into the South China Sea. J Geophys Res Oceans 105:6415–6424. doi:10.1029/1999jc900323 CrossRefGoogle Scholar
  28. Sasai Y, Yoshikawa C, Smith SL, Hashioka T, Matsumoto K, Wakita M, Sasaoka K, Honda MC (2016) Coupled 1-D physical–biological model study of phytoplankton production at two contrasting time-series stations in the western North Pacific. J Oceanogr:1–18. doi:10.1007/s10872-015-0341-1
  29. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404. doi:10.1016/j.ocemod.2004.08.002 CrossRefGoogle Scholar
  30. Shigemitsu M et al (2012) Development of a one-dimensional ecosystem model including the iron cycle applied to the Oyashio region, western subarctic Pacific. J Geophys Res 117. doi:10.1029/2011jc007689
  31. Siegel DA, McGillicuddy DJ, Fields EA (1999) Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J Geophys Res 104:13359. doi:10.1029/1999jc900051 CrossRefGoogle Scholar
  32. Tseng CM, Gong GC, Wang LW, Liu KK, Yang Y (2009) Anomalous biogeochemical conditions in the northern South China Sea during the El-Niño events between 1997 and 2003. Geophys Res Lett 36:L14611. doi:10.1029/2009gl038252 CrossRefGoogle Scholar
  33. Wang J (1986) Observation of abyssal flows in the northern South China Sea. Acta Oceanogr Taiwan 16:36–45Google Scholar
  34. Wang J, Hong H, Jiang Y, Chai F, Yan X-H (2013) Summer nitrogenous nutrient transport and its fate in the Taiwan Strait: a coupled physical-biological modeling approach. J Geophys Res Oceans 118:4184–4200. doi:10.1002/jgrc.20300 CrossRefGoogle Scholar
  35. Wong GTF, TL K, Mulholland M, Tseng CM, Wang DP (2007a) The SouthEast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea—an overview. Deep-Sea Res II Top Stud Oceanogr 54:1434–1447. doi:10.1016/j.dsr2.2007.05.012 CrossRefGoogle Scholar
  36. Wong GTF, Tseng C-M, Wen L-S, Chung S-W (2007b) Nutrient dynamics and N-anomaly at the SEATS station. Deep-Sea Res II Top Stud Oceanogr 54:1528–1545. doi:10.1016/j.dsr2.2007.05.011 CrossRefGoogle Scholar
  37. Wyrtki K (1965) The average annual heat balance of the North Pacific Ocean and its relation to ocean circulation. J Geophys Res 70:4547–4559CrossRefGoogle Scholar
  38. Xiu P, Chai F (2011) Modeled biogeochemical responses to mesoscale eddies in the South China Sea. J Geophys Res Oceans 116:C10006. doi:10.1029/2010JC006800 CrossRefGoogle Scholar
  39. Xu F-H, Oey L-Y (2014) State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn 64:905–923. doi:10.1007/s10236-014-0720-y CrossRefGoogle Scholar
  40. Yang H, Liu Q, Jia X (1999) On the upper oceanic heat budget in the South China Sea: annual cycle. Adv Atmos Sci 16:619–629CrossRefGoogle Scholar
  41. Yang Q, Zhao W, Liang X, Tian J (2016) Three-dimensional distribution of turbulent mixing in the South China Sea. J Phys Oceanogr 46:769–788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wenfang Lu
    • 1
    • 2
    • 3
    • 4
  • Xiao-Hai Yan
    • 2
    • 3
    • 4
  • Lu Han
    • 2
  • Yuwu Jiang
    • 1
  1. 1.State Key Laboratory of Marine Environmental Science (MEL)Xiamen UniversityXiamenChina
  2. 2.Center for Remote Sensing, College of Earth, Ocean and EnvironmentUniversity of DelawareNewarkUSA
  3. 3.Joint Institute for Coastal Research and Management (UD/XMU Joint-CRM)University of DelawareNewarkUSA
  4. 4.Joint Institute for Coastal Research and Management (UD/XMU Joint-CRM)Xiamen UniversityXiamenChina

Personalised recommendations