Ocean Dynamics

, Volume 67, Issue 1, pp 51–64 | Cite as

Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

Article

Abstract

A numerical simulation of very severe cyclonic storm ‘Phailin’, which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10–15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model ‘Weather Research and Forecasting’ (WRF) and ocean circulation model ‘Regional Ocean Modelling System’ (ROMS) components of the ‘Coupled Ocean-Atmosphere-Wave-Sediment Transport’ (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2–2.5 °C) and an increase in sea surface salinity (SSS) (2–3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to −0.1 °C h−1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11–12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h−1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10−3 m s−1), rise in isotherms and isohalines along 85–88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

Keywords

Tropical cyclone Phailin Bay of Bengal Upwelling WRF ROMS COAWST model 

Notes

Acknowledgements

The ocean observation programme of the National Institute of Ocean Technology (NIOT), Chennai, is gratefully acknowledged for the deployment and maintenance of OMNI buoy. OMNI buoy BD09 and BD10 data were acquired from the Indian National Centre for Ocean Information Services (INCOIS), Hyderabad. ECCO2 is a contribution to the NASA Modeling, Analysis, and Prediction (MAP) programme. KRP acknowledges UGC-CSIR for his fellowship support. The present study benefitted from the funding supports under the HOOFS programme of INCOIS, Hyderabad (ESSO, Ministry of Earth Sciences, Govt. of India), and the Ocean Mixing and Monsoon (OMM) programme of the National Monsoon Mission, Govt. of India. The High Performance Computing (HPC) facility provided by IIT Delhi and the Department of Science and Technology (DST), Govt. of India, are thankfully acknowledged. The authors thank the two anonymous reviewers for their constructive suggestions that helped to improve the manuscript. Graphics were generated in this manuscript using Ferret and NCL.

References

  1. Alam MM, Hossain MA, Shafee S (2003) Frequency of Bay of Bengal cyclonic storms and depressions crossing different coastal zones. Inter J Climatol 23:1119–1125. doi: 10.1002/joc.927 CrossRefGoogle Scholar
  2. Ali MM, Jagadeesh PSV, Jain S (2007) Effects of eddies on Bay of Bengal cyclone intensity. Eos Trans AGU 88:93–95. doi: 10.1029/ 2007EO080001 CrossRefGoogle Scholar
  3. Babin SM, Carton JA, Dickey TD, Wiggert JD (2004) Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J Geophys Res 109:C03043. doi: 10.1029/2003JC001938 CrossRefGoogle Scholar
  4. Behera SK, Deo AA, Salvekar PS (1998) Investigation of mixed layer response to Bay of Bengal cyclone using a simple ocean model. Meteorog Atmos Phys 65:77–91CrossRefGoogle Scholar
  5. Bender MA, Ginis I (2000) Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Weather Rev 128:917–946. doi: 10.1175/1520- 0493 (2000)128<0917:RCSOHO>2.0.CO;2CrossRefGoogle Scholar
  6. Bender MA, Ginis I, Kurihara Y (1993) Numerical simulations of the tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res 98:23245–23263CrossRefGoogle Scholar
  7. Bosart L, Velden CS, Bracken WE, Molinari J, Black PG (2000) Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon Wea Rev 128:322–352CrossRefGoogle Scholar
  8. Carniel S, Barbariol F, Benetazzo A, Bonaldo D, Falcieri FM, Miglietta MM, Ricchi A, Sclavo M (2016) Scratching beneath the surface while coupling atmosphere, ocean and waves: analysis of a dense water formation event. Ocean Modeling 101:101–112CrossRefGoogle Scholar
  9. Chan JCL, Duan Y, Shay LK (2001) Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J Atmos Sci 58(2):154–172CrossRefGoogle Scholar
  10. Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796. doi: 10.1175//2562.1 CrossRefGoogle Scholar
  11. Cione JJ, Black PG, Houston S (2000) Surface observations in the hurricane environment. Mon Wea Rev 128:1550–1561CrossRefGoogle Scholar
  12. Chassignet EP, Arango HG, Dietrich D, Ezer T, Ghil M, Haidvogel DB, Ma CC, Mehra A, Paiva AM, Sirkes Z (2000) DAMEE-NAB: the base experiments. Dyn Atmos Oceans 32:155–183CrossRefGoogle Scholar
  13. D’Asaro EA (2003) The ocean boundary layer under hurricane Dennis. J Phys Oceanogr 33:561–579CrossRefGoogle Scholar
  14. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  15. Ekman VW (1905) On the influence of the Earth’s rotation on ocean currents. Arkiv for Matematik, Astronomi, och Fysik 2(11):1–52Google Scholar
  16. Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665–669. doi: 10.1038/44326 CrossRefGoogle Scholar
  17. Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J Geophys Res 101(C2):3747–3764CrossRefGoogle Scholar
  18. Foltz GR, McPhaden MJ (2009) Impact of barrier layer thickness on SST in the Central Tropical North Atlantic. J Clim 22:285–299. doi: 10.1175/2008JCLI2308.1 CrossRefGoogle Scholar
  19. Girishkumar MS, Ravichandran M, Han W (2013) Observed intraseasonal thermocline variability in the Bay of Bengal. J Geophys Res Oceans 118:3336–3349. doi: 10.1002/jgrc.20245 CrossRefGoogle Scholar
  20. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  21. Haidvogel, DB, Arango, HG, Hedstrom, K, Beckmann, A, Malanotte-Rizzoli, P Shchepetkin, AF, (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32, 239–281.Google Scholar
  22. Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc 42(2):129–151Google Scholar
  23. Jacob SD, Shay LK (2003) The role of oceanic mesoscale features on the tropical cyclone induced mixed layer response. J Phys Oceanogr 33:649676CrossRefGoogle Scholar
  24. IMD Report (2013) Very severe cyclonic storm, PHAILIN over the Bay of Bengal (08–14 October 2013): a report. India Meteorological Department, Technical Report, October 2013Google Scholar
  25. Jacob SD, Koblinsky C (2007) Effects of precipitation on the upper-ocean response to a hurricane. Mon Weather Rev 135:2207–2225CrossRefGoogle Scholar
  26. Jacob, R, Larson, J, Ong, E, (2005) M x N communication and parallel interpolation in CCSM using the model coupling toolkit. Preprint ANL/MCSP1225-0205. Mathematics and Computer Science Division, Argonne National Laboratory, 25 ppGoogle Scholar
  27. Jourdain NC, Lengaigne M, Vialard J, Madec G, Menkes CE, Vincent EM, Samson G, Jullien Barnier B (2013) Observation-based estimates of ocean mixing inhibition by heavy rainfall under tropical cyclones. J Phys Oceanogr 43:205–221CrossRefGoogle Scholar
  28. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteor 43:170–181CrossRefGoogle Scholar
  29. Kaplan J, DeMaria MJ, Knaff A (2010) A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific Basins. Weather Forecast 25:220–241. doi: 10.1175/2009WAF2222280.1 CrossRefGoogle Scholar
  30. Kumar VS, Nair AM (2015) Inter-annual variations in wave spectral characteristics at a location off the central west coast of India. Ann Geophys 33:159–167. doi: 10.5194/angeo-33-159-2015 CrossRefGoogle Scholar
  31. Large GW, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  32. Leipper DF (1967) Observed ocean conditions and Hurricane Hilda, 1964. J Atmos Sci 24(2):182–186CrossRefGoogle Scholar
  33. Lin YL, Chen SY, Hill CM, Huang CY (2005) Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J Atmos Sci 62(6):1849–1866CrossRefGoogle Scholar
  34. Lin I et al (2003) New evidence for enhanced primary production triggered by tropical cyclone. Geophys Res Lett 30:1718. doi: 10.1029/2003GL017141 Google Scholar
  35. Lin II, Chen CH, Pun IF, Liu T, Wu CCW (2009) Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys Res Lett 36:L03817. doi: 10.1029/2008GL035815 Google Scholar
  36. Lloyd ID, Vecchi GA (2011) Observational evidence for oceanic controls on hurricane intensity. J Clim 24:1138–1153. doi: 10.1175/ 2010JCLI3763.1 CrossRefGoogle Scholar
  37. Lotliker AA, Kumar TS, Reddem VS, Nayak S (2014) Cyclone Phailin enhanced the productivity following its passage: evidence from satellite data. Curr Sci 106(3):360–361Google Scholar
  38. Mandal M, Singh KS, Balaji M, Mohapatra M (2015) Performance of WRF-ARW model in real-time prediction of Bay of Bengal cyclone ‘Phailin’. Pure Appl Geophys. doi: 10.1007/s00024-015-1206-7 Google Scholar
  39. Maneesha K, Murty VSN, Ravichandran M, Lee T, Yu W, McPhaden MJ (2012) Upper Ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila. Prog Oceanogr 106:49–61CrossRefGoogle Scholar
  40. Marks F, Shay LK (1998) Landfalling tropical cyclones: forecast problems and associated research opportunities: report of the 5th prospectus development team to the US Weather Research Program. BAMS 79:305–323CrossRefGoogle Scholar
  41. Marchesiello P, McWilliams JC, Shchepetkin A (2003) Equilibrium structure and dynamics of the California Current System. J Phys Oceanogr 33(4):753–783CrossRefGoogle Scholar
  42. McPhaden MJ, Foltz GR, Lee T, Murty VSN, Ravichandran M, Vecchi GA, Vialard J, Wiggert JD, Yu L (2009) Ocean–atmosphere interactions during cyclone Nargis. EOS Trans AGU 90:53–54. doi: 10.1029/ 2009EO070001 CrossRefGoogle Scholar
  43. Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W (2005) The Weather Research and Forecast Model: software architecture and performance, in: Proceedings of the Eleventh ECMWRF Workshop on the Use of High Performance Computing in Meteorology, Reading, UK, World Scientific 156–168Google Scholar
  44. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16 663–16 682CrossRefGoogle Scholar
  45. Morel A, Antoine D (1994) Heating rate within the upper ocean in relation to its bio-optical state. J Phys Oceanogr 24:1652–1665CrossRefGoogle Scholar
  46. Monin AS, Obukhov AMF (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151(163):e187Google Scholar
  47. Nayak SR, Sarangi RK, Rajawat AS (2001) Application of IRSP4 OCM data to study the impact of cyclone on coastal environment of Orissa. Curr Sci 80:1208–1213Google Scholar
  48. Neetu S, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Ramesh Kumar MR, Durand F (2012) Influence of oceanic stratification on tropical cyclones-induced surface cooling in the Bay of Bengal. J Geophys Res:117. doi: 10.1029/2012JC008433
  49. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound Layer Meteor 107:401–427CrossRefGoogle Scholar
  50. Olabarrieta M, Warner JC, Kumar N (2011) Wave–current interaction in Willapa Bay. J Geophys Res 116:C12014. doi: 10.1029/2011JC007387 CrossRefGoogle Scholar
  51. Olabarrieta M, Warner JC, Armstrong B, He R, Zambon JB (2012) Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: an application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model 43–44:112–137. doi: 10.1029/2011JC007387 CrossRefGoogle Scholar
  52. Pant V, Girishkumar MS, Udaya Bhaskar TVS, Ravichandran M, Papa F, Thangaprakash VP (2015) Observed interannual variability of near-surface salinity in the bay of Bengal. J Geophys Res 120(5):3315–3329CrossRefGoogle Scholar
  53. Phillips NA (1957) A coordinate system having some special advantages for numerical forecasting. J Met 4:184–185CrossRefGoogle Scholar
  54. Piontlovsky SA, Nezlin NP, Al-Azri A, Al-Hashmi K (2012) Mesoscale eddies, and variability of chlorophyll-a in the Sea of Oman. Int J Remote Sens 33(17):5341–5346CrossRefGoogle Scholar
  55. Price JF (1981) Upper-ocean response to a hurricane. J Phys Oceanogr 11:153–175CrossRefGoogle Scholar
  56. Ricchi A, Miglietta MM, Falco PP, Bergamasco A, Benetazzo A, Bonaldo D, Sclavo M, Carniel S (2016) On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos Res 172–173:48–65. doi: 10.1016/j.atmosres.2015.12.023 CrossRefGoogle Scholar
  57. Riehl H (1950) A model of hurricane formation. J Appl Phys 21(9):917–925CrossRefGoogle Scholar
  58. Rao RR, Sivakumar R (2003) Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J Geophys Res 108(C1):3009. doi: 10.1029/2001JC000907 CrossRefGoogle Scholar
  59. Schade LR, Emanuel KA (1999) The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model. J Atmos Sci 56(4):642–651. doi: 10.1175/1520-0469 CrossRefGoogle Scholar
  60. Schade LR (2000) Tropical cyclone intensity and sea surface temperature. J Atmos Sci 57:3122–3130CrossRefGoogle Scholar
  61. Sengupta D, Goddalehundi BR, Anitha DS (2007) Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmos Sci Lett 9:1–6CrossRefGoogle Scholar
  62. Shay LK, Black PG, Mariano AJ, Hawkins JD, Elsberry RL (1992) Upper ocean response to Hurricane Gilbert. J Geophys Res 97(20):227–220Google Scholar
  63. Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128(5):1366–1383CrossRefGoogle Scholar
  64. Shay LK, Brewster JK (2010) Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon Weather Rev 138(6):2110–2131. doi: 10.1175/2010MWR3189.1 CrossRefGoogle Scholar
  65. Shenoi SSC, Shankar D, Shetye SR (2002) Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J Geophys Res 107: doi:  10.1029/2000JC000679. Issn: 0148–0227.
  66. Skamarock WC, Klemp JB (2008) A time-split non-hydrostatic atmospheric model. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  67. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR Technical Note, NCAR/TN-468 + STRGoogle Scholar
  68. Song Y, Haidvogel D (1994) A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J Comput Phys 115(1):228–244. doi: 10.1006/jcph.1994.1189 CrossRefGoogle Scholar
  69. Stommel H (1958) The abyssal circulation. Deep Sea Res 5:80–82CrossRefGoogle Scholar
  70. Subrahmanyam B, Rao KH, Rao NS, Murthy VSN (2002) Influence of a tropical cyclone on chlorophyll-a concentration in the Arabian Sea. Geophys Res Lett 29(22):1–22. doi: 10.1029/2002GL015892 CrossRefGoogle Scholar
  71. Subramanyam B, Murthy VSN, Sharp RJ, O’Brien JJ (2005) Air-sea coupling during the tropical cyclones in the Indian Ocean: a case study using satellite observations. Pure Appl Geophys 162:1643–1672CrossRefGoogle Scholar
  72. Subrahmanyam B, Ueyoshi K, Morrison JM (2008) Sensitivity of the Indian Ocean circulation to phytoplankton forcing using an ocean model. Remote Sens Environ 112:1488–1496CrossRefGoogle Scholar
  73. Sweeney C, Gnanadesikan A, Griffies S, Harrison M, Rosati A, Samuels B (2005) Impacts of shortwave penetration depth on large-scale ocean circulation heat transport. J Phys Oceanogr 35:1103–1119. doi: 10.1175/JPO2740.1 CrossRefGoogle Scholar
  74. Thadathil P, Muraleedharan PM, Rao RR, Somayajulu YK, Reddy GV, Revichandran C (2007) Observed seasonal variability of barrier layer in the Bay of Bengal. J Geophys Res:112. doi: 10.1029/2006JC003651
  75. Tummala SK, Mupparthy RS, Kumar NM, Nayak SR (2009) Phytoplankton bloom due to Cyclone Sidr in the central Bay of Bengal. J Appl Remote Sens 3(1):1–14. doi: 10.1117/1.3238329 CrossRefGoogle Scholar
  76. Venkatesan R, Shamji VR, Latha G, Simi M, Rao RR, Arul M, Atmanand MA (2013) In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal. Curr Sci 104(9):1166–1177Google Scholar
  77. Venkatesan R, Mathew S, Vimala J, Latha G, Arul MM, Ramasundaram S, Sundar R, Lavanya R, MA A (2014) Signatures of very severe cyclonic storm Phailin in met–ocean parameters observed by moored buoy network in the Bay of Bengal. Curr Sci 107(4):589–595Google Scholar
  78. Vialard J, Foltz GR, McPhaden MJ, Duvel JP, Montegut CB (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophys Res Lett 35:L19608. doi: 10.1029/2008GL035238 CrossRefGoogle Scholar
  79. Vinayachandran PN, Shankar D, Vernekar S, Sandeep KK, Amol P, Neema CP, Chatterjee A (2013) A summer monsoon pump to keep the Bay of Bengal salty. Geophys Res Lett 40:1777–1782. doi: 10.1002/grl.50274 CrossRefGoogle Scholar
  80. Vincent EM, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain N, Menkes CE, Jullien S (2012a) Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J Geophys Res 117:C02020. doi: 10.1029/2011JC007396 Google Scholar
  81. Vincent EM, Lengaigne M, Vialard J, Madec G, Jourdain N, Masson S (2012b) Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J Geophys Res:117. doi: 10.1029/2011JC007705
  82. Walker ND, Leben RR, Balasubramanian S (2005) Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys Res Lett 32:L18610. doi: 10.1029/2005GL023716 CrossRefGoogle Scholar
  83. Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model 35:230–244. doi: 10.1016/j. oceanmod.2010.07.010 CrossRefGoogle Scholar
  84. Warner JC, Armstrong B, Sylvester CS, Voulgaris G, Nelson T, Schwab WC, Denny JF (2012) Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina. Cont Shelf Res 42:51–63CrossRefGoogle Scholar
  85. Yablonsky RM, Ginis I (2013) Impact of a warm ocean Eddy’s circulation on hurricane-Induced Sea surface cooling with implications for hurricane intensity. Mon Weather Rev 141:9971021. doi: 10.1175/MWR-D-12-00248.1 CrossRefGoogle Scholar
  86. Zambon JB, He R, Warner JC (2014) Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn 64(11):1535–1554CrossRefGoogle Scholar
  87. Zhu T, Zhang DL (2006) The impact of the storm-induced SST cooling on hurricane intensity. Adv Atmos Sci 23:14–22CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre for Atmospheric SciencesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations