Ocean Dynamics

, Volume 67, Issue 2, pp 191–209 | Cite as

Deep circulation driven by strong vertical mixing in the Timor Basin

  • Yannis CuypersEmail author
  • Stephane Pous
  • Janet Sprintall
  • Agus Atmadipoera
  • Gurvan Madec
  • Robert Molcard


The importance of deep mixing in driving the deep part of the overturning circulation has been a long debated question at the global scale. Our observations provide an illustration of this process at the Timor Basin scale of ∼1000 km. Long-term averaged moored velocity data at the Timor western sill suggest that a deep circulation is present in the Timor Basin. An inflow transport of ∼0.15 Sv is observed between 1600 m and the bottom at 1890 m. Since the basin is closed on its eastern side below 1250 m depth, a return flow must be generated above 1600 m with a ∼0.15 Sv outflow. The vertical turbulent diffusivity is inferred from a heat and transport balance at the basin scale and from Thorpe scale analysis. Basin averaged vertical diffusivity is as large as 1 × 10−3 m2 s−1. Observations are compared with regional low-resolution numerical simulations, and the deep observed circulation is only recovered when a strong vertical diffusivity resulting from the parameterization of internal tidal mixing is considered. Furthermore, the deep vertical mixing appears to be strongly dependent on the choice of the internal tide mixing parameterization and also on the prescribed value of the mixing efficiency.


Timor Basin Vertical mixing Deep circulation Internal tide mixing parameterization 



Model experiments were performed using HPC resources from GENCI-IDRIS (Grant 2010-011140).


  1. Alford M, Gregg M, Ilyas M (1999) Diapycnal mixing in the Banda Sea: results of the first microstructure measurements in the Indonesian throughflow. Geophys Res Lett 26:2741–2744CrossRefGoogle Scholar
  2. Alford MH, Girton JB, Voet G, Carter GS, Mickett JB, Klymack J (2013) Turbulent mixing and hydraulic control of abyssal water in the Samoan Passage. Geophys Res Lett 40(17):4666–4674. doi: 10.1002/grl.50684 CrossRefGoogle Scholar
  3. Arneborg L (2002) Mixing efficiencies in patchy turbulence. J Phys Oceanogr 32(5):1496–1506CrossRefGoogle Scholar
  4. Barnier B, Madec G, Penduff T, Molines JM, Tréguier A-M, Le Sommer J, Beckmann A, Biastoch A, Boening C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, DeCuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56(5-6):543–567CrossRefGoogle Scholar
  5. Barry ME, Ivey GN, Winters KB, Imberger J (2001) Measurements of diapycnal diffusivities in stratified fluids. J Fluid Mech 442(1):267–291Google Scholar
  6. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  7. Bluteau CE, Jones NL, Ivey GN (2013) Turbulent mixing efficiency at an energetic ocean site. J Geophys Res: Oceans 118(9):4662–4672CrossRefGoogle Scholar
  8. Bouruet-Aubertot P, Cuypers Y, Ferron B, Dausse D, Menage O, Atmadipoera A, Jaya I (2012). Finescale parameterization of turbulent mixing and internal tides in the Indonesian Throughflow from INDOMIX experiment. In AGU Fall Meeting Abstracts (Vol. 1, p. 1872)Google Scholar
  9. Boyer TP, JI Antonov, OK Baranova, C Coleman, HE Garcia, A Grodsky, DR Johnson, RA Locarnini, AV Mishonov, TD O'Brien, CR Paver, JR Reagan, D Seidov, IV Smolyar, MM Zweng (2013). World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp.,  10.7289/V5NZ85MT
  10. Brodeau L, Barnier B, Penduff T, Tréguier A-M, Gulev S (2010) An ERA40 based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi: 10.1016/j.ocemod.2009.10.005 CrossRefGoogle Scholar
  11. Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing: Comparisons with observations. Geophys Res Lett 30(6):1275. doi: 10.1029/ 2002GL016473 CrossRefGoogle Scholar
  12. Cowley R, B Heaney, S Wijffels, L Pender, J Sprintall, S Kawamoto, R Molcard (2008) INSTANT Sunda Data Report Description and Quality Control, available at
  13. Davis KA, Monismith SG (2011) The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J Phys Oceanogr 41(11):2223–2241CrossRefGoogle Scholar
  14. Decloedt T, Luther DS (2012) Spatially heterogeneous diapycnal mixing in the abyssal ocean: a comparison of two parameterizations to observations. J Geophys Res: Oceans 117(C11):1978–2012CrossRefGoogle Scholar
  15. de Lavergne C, Madec G, Le Sommer J, Nurser AG, Naveira Garabato AC (2015). The impact of a variable mixing efficiency on the abyssal overturning. Journal of Physical OceanographyGoogle Scholar
  16. Dillon TM (1982) Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J Geophys Res 87(C12):9601–9613. doi: 10.1029/JC087iC12p09601 CrossRefGoogle Scholar
  17. Ding Y, Bao X, Yu H, Kuang L (2012) A numerical study of the barotropic tides and tidal energy distribution in the Indonesian seas with the assimilated finite volume coastal ocean model. Ocean Dyn 62:515–532CrossRefGoogle Scholar
  18. Drushka K, Sprintall J, Gille ST, Brodjonegoro I (2010) Vertical structure of Kelvin waves in the Indonesian throughflow exit passages. J Phys Oceanogr 40:1965–1987CrossRefGoogle Scholar
  19. Dussin R, A-M Treguier, JM Molines, B Barnier, T Penduff, L Brodeau, G Madec (2009). Definition of the interannual experiment ORCA025-B83, 1958-2007. LPO Report 902Google Scholar
  20. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778CrossRefGoogle Scholar
  21. Emile-Geay J, Madec G (2009) Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci 5:203–217CrossRefGoogle Scholar
  22. Fer I, Müller M, Peterson AK (2015) Tidal forcing, energetics, and mixing near the Yermak Plateau. Ocean Sci 11:287–304CrossRefGoogle Scholar
  23. Ferron B, Mercier H, Speer K, Gargett A, Polzin K (1998) Mixing in the Romanche fracture zone. J Phys Oceanogr 28(10):1929–1945CrossRefGoogle Scholar
  24. Ffield A, Robertson R (2008) Temperature finestructure in the Indonesian Seas. J Geophys Res Oceans, 113(C9)Google Scholar
  25. Fieux M, Andrie´ C, Delecluse P, Ilahude AG, Kartavtseff A, Mantisi F, Molcard R, Swallow JC (1994) Measurements within the Pacific-Indian oceans throughflow region. Deep-Sea Res 41:1091–1130CrossRefGoogle Scholar
  26. Gargett AE (1988) The scaling of turbulence in the presence of stable stratification. J Geophys Res: Oceans (1978–2012) 93(C5):5021–5036CrossRefGoogle Scholar
  27. Gargett A, Garner T (2008) Determining Thorpe scales from ship-lowered CTD density profiles. J Atmos Ocean Technol 25(9):1657–1670CrossRefGoogle Scholar
  28. Gordon AL, Giulivi CF, Ilahude AG (2003) Deep topographic barriers within the Indonesian Seas. Deep Sea Res, Part II 50:2205–2228CrossRefGoogle Scholar
  29. Gregg MC, Alford MH, Kontoyiannis H, Zervakis V, Winkel D (2012) Mixing over the steep side of the Cycladic Plateau in the Aegean Sea. J Mar Syst 89(1):30–47CrossRefGoogle Scholar
  30. Haertel P, Fedorov A (2012) The ventilated ocean. J Phys Oceanogr 42:161–164CrossRefGoogle Scholar
  31. Heywood KJ, Naveira Garabato AC, Stevens DP (2002) High mixing rates in the abyssal Southern Ocean. Nature 415:1011–1014CrossRefGoogle Scholar
  32. Hogg N, Biscaye PE, Gardner W, Schmitz WJ Jr (1982) On the transport and modification of Antarctic bottom water in the Vema Channel. J Mar Res 40:231–283Google Scholar
  33. Huang RX (1999) Mixing and energetics of the oceanic thermohaline circulation. J Phys Oceanogr 29:727–746CrossRefGoogle Scholar
  34. Hughes GO, Griffiths RW (2006) A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model 12:46–79CrossRefGoogle Scholar
  35. Jayne SR (2009) The impact of abyssal mixing parameterizations in an ocean general circulation model. J Phys Oceanogr 39:1756–1775CrossRefGoogle Scholar
  36. Kartadikaria AR, Miyazawa Y, Varlamov SM, Nadaoka K (2011) Ocean circulation for the Indonesian seas driven by tides and atmospheric forcings: comparison to observational data. J Geophys Res 116(C9):C09009CrossRefGoogle Scholar
  37. Katsumata K, Wijffels SE, Steinberg CR, Brinkman R (2010) Variability of the semidiurnal internal tides observed on the Timor Shelf. J Geophys Res 115(C10):C10008CrossRefGoogle Scholar
  38. Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessieres L, Molcard R (2007) On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys Res Lett 34:L04604. doi: 10.1029/2006GL028405 CrossRefGoogle Scholar
  39. Koch-Larrouy A, Madec G, Iudicone D, Atmadipoera A, Molcard R (2008a) Physical processes contributing to the water mass transformation of the Indonesian Throughflow. Ocean Dyn 58:275–288. doi: 10.1007/s10236-008-0154-5 CrossRefGoogle Scholar
  40. Koch-Larrouy A, Madec G, Blanke B, Molcard R (2008b) Water mass transformation along the Indonesian throughflow in an OGCM. Ocean Dyn 58:289–309. doi: 10.1007/s10236-008-0155-4 CrossRefGoogle Scholar
  41. Koch-Larrouy A, Atmadipoera A, van Beek P, Madec G, Aucan J, Lyard F, Souhaut M (2015) Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep Sea Research Part I: Oceanographic Research PapersGoogle Scholar
  42. Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S (2010) Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim Dyn 34(6):891–904CrossRefGoogle Scholar
  43. Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM (2006) Global abyssal mixin inferred from Lowered ADCP shear and CTD strain profiles. J Phys Oceanogr 36:1553–1576CrossRefGoogle Scholar
  44. Kunze E, MacKay C, McPhee-Shaw EE, Morrice K, Girton JB, Terker SR (2012) Turbulent mixing and exchange with interior waters on sloping boundaries. J Phys Oceanogr 42(6):910–927CrossRefGoogle Scholar
  45. Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99:24,777–24,798CrossRefGoogle Scholar
  46. Le Sommer J, Penduff T, Theetten S, Madec G, Barnier B (2009) How momentum advection schemes influence current-topography interactions at eddy permitting resolution. Ocean Model 29:1–14. doi: 10.1016/ j.ocemod.2008.11.007 CrossRefGoogle Scholar
  47. Ledwell JR, Montgomery ET, Polzin KL, St. Laurent LC, Schmitt RW, Toole JM (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:79–182CrossRefGoogle Scholar
  48. Levitus S, T Boyer, M Conkright, T OBrian, J Antonov, C Stephens, L Stathopolos, D Johnson, R Gelfeld (1998). World Ocean database 1998, technical Report NESDID18, NOAA Atlas.Google Scholar
  49. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 184ppGoogle Scholar
  50. Lozovatsky ID, HJS Fernando (2013). Mixing efficiency in natural flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371(1982)Google Scholar
  51. MacKinnon J, Johnston TMS, Pinkel R (2008) Strong transport and mixing of deep water through the Southwest Indian Ridge. Nat Geosci 1:755–758CrossRefGoogle Scholar
  52. Madec G, Imbard M (1996) A global ocean mesh to overcome the north pole singularity. Clim Dyn 12:381–388CrossRefGoogle Scholar
  53. Madec G (2008) NEMO reference manual, ocean dynamic component: NEMO-OPA. Preliminary version, Tech. Rep. 27, Note du pôle de modélisation, Institut Pierre Simon Laplace (IPSL), France, ISSN No 1288-1619Google Scholar
  54. Melet A, Verron J, Gourdeau L, Koch-Larrouy A (2011) Equatorward pathways of Solomon Sea water masses and their modifications. J Phys Oceanogr 41(4):810–826CrossRefGoogle Scholar
  55. Melet A, Hallberg R, Legg S, Polzin K (2013) Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J Phys Oceanogr 43(3):602–615CrossRefGoogle Scholar
  56. Melet A, Hallberg R, Legg S, Nikurashin M (2014) Sensitivity of the ocean state to lee wave driven mixing. J Phys Oceanogr 44:900–921CrossRefGoogle Scholar
  57. Meyer A, Sloyan BM, Polzin KL, Phillips HE, Bindoff NL (2015) Mixing variability in the Southern Ocean. J Phys Oceanogr 45(4):966–987CrossRefGoogle Scholar
  58. Molcard R, Fieux M, Ilahude AG (1996) The Indo-Pacific throughflow in the Timor Passage. J Geophys Res 101(C5):12411–12420CrossRefGoogle Scholar
  59. Müller M, Cherniawsky JY, Foreman MGG, von Storch J-S (2012) Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys Res Lett 39:L19607. doi: 10.1029/2012GL053320 Google Scholar
  60. Munk W (1966) Abyssal recipes. Deep-Sea Res 13:707–730Google Scholar
  61. Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1976–2009CrossRefGoogle Scholar
  62. Nagai T, Hibiya T (2015) Internal tides and associated vertical mixing in the Indonesian Archipelago. J Geophys Res: Oceans 120:3373–3390CrossRefGoogle Scholar
  63. Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10(1):83–89CrossRefGoogle Scholar
  64. Penduff T, Le Sommer J, Barnier B, Treguier A-M, Molines JM, Madec G (2007) Influence of numerical schemes on current-topography interactions in ¼° global ocean simulations. Ocean Sci 3:509–524CrossRefGoogle Scholar
  65. Polzin KL, Toole JM, Schmitt RW (1995) Finescale parameterizations of turbulent dissipation. J Phys Oceanogr 25:306–328CrossRefGoogle Scholar
  66. Polzin KL, Toole JM, Ledwell JR, Schmitt RW (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276(5309):93–96CrossRefGoogle Scholar
  67. Pratt LJ, JA Whitehead (2007). Rotating hydraulics—nonlinear topographic effects in the ocean and atmosphere, Springer, 608ppGoogle Scholar
  68. Rudnick DL, Boyd TJ, Brinard RE, Carter GS, Egbert GD (2003) From tides to mixing along the Hawaiian Ridge. Science 301(5631):355–357CrossRefGoogle Scholar
  69. Saenko OA, Merryfield WJ (2011) On the effect of topographically enhanced mixing on the global ocean circulation. J Phys Oceanogr 35:826–834CrossRefGoogle Scholar
  70. St. Laurent L, Schmitt RW (1999) The contribution of salt fingers to vertical mixing in the North Atlantic tracer release experiment. J Phys Oceanogr 29(7):1404–1424CrossRefGoogle Scholar
  71. St. Laurent L, Garrett C (2002) The role of internal tides in mixing the deep ocean. J Phys Oceanogr 32:2882–2899CrossRefGoogle Scholar
  72. St. Laurent L, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29(23). doi: 10.1029/2002GL015633
  73. Shih LH, Koseff JR, Ivey GN, Ferziger JH (2005) Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J Fluid Mech 525:193–214CrossRefGoogle Scholar
  74. Simmons HL, Hallberg RH, Arbic BK (2004a) Internal wave generation in a global baroclinic tide model. Deep Sea Res, Part II 51:3043–3068CrossRefGoogle Scholar
  75. Simmons HL, Jayne SR, Laurent LCS, Weaver AJ (2004b) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6(3):245–263CrossRefGoogle Scholar
  76. Sprintall J, Gordon AL, Murtugudde R, Susanto RD (2000) A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J Geophys Res 105:17217–17230CrossRefGoogle Scholar
  77. Sprintall J, Wijffels S, Gordon AL, Ffield A, Molcard R, DwiSusanto R, Soesilo I, Sopaheluwakan J, Surachman Y, Van Aken H (2004) INSTANT: a new international array to measure the Indonesian Throughflow. Eos Trans AGU 85(39):369–376. doi: 10.1029/2004EO390002 CrossRefGoogle Scholar
  78. Sprintall J, Wijffels S, Molcard R, Jaya I (2009) Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004-2006. J Geophys Res 114:C07001. doi: 10.1029/2008JC005257 CrossRefGoogle Scholar
  79. Tessler ZD, Gordon AL, Pratt LJ, Sprintall J (2010) Transport and dynamics of the Panay Sill overflow in the Philippine Seas. J Phys Oceanogr 40:2679–2695CrossRefGoogle Scholar
  80. Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Philos Trans Royal Soc Lond A: Math, Phys Eng Sci 286(1334):125–181CrossRefGoogle Scholar
  81. Thurnherr AM (2006) Diapycnal mixing associated with an overflow in a deep submarine canyon. Deep-Sea Res II 53:194–206CrossRefGoogle Scholar
  82. Treguier A-M, Barnier B, De Miranda AP, Molines JM, Grima N, Imbard M, Madec G, Messager C, Reynaud T, Michel S (2001) An eddy-permitting model of the Atlantic circulation: evaluating open boundary conditions. J Geophys Res 106:22115–22129CrossRefGoogle Scholar
  83. Toggweiler JR, Samuels B (1995) Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res 42:477–500CrossRefGoogle Scholar
  84. Van Aken HM, Brodjonegoro IS, Jaya I (2009) The deepwater motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep-Sea Res 56:1203–1216CrossRefGoogle Scholar
  85. Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E, Simmons HL, Lee CM (2014) Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J Phys Oceanogr 44(7):1854–1872CrossRefGoogle Scholar
  86. Webb DJ, Suginohara N (2001) Vertical mixing in the ocean. Nature 409(37)Google Scholar
  87. Wijffels S, Meyers G (2004) An intersection of oceanic waveguides: variability in the Indonesian Throughflow region. J Phys Oceanogr 34:1232–1253CrossRefGoogle Scholar
  88. Whitehead JA, Worthington LV (1982) The flux and mixing rates of Antarctic Bottom Water within the North Atlantic. J Geophys Res 87:7902–7924CrossRefGoogle Scholar
  89. Whitehead JA (1989) Internal hydraulic control in rotating fluids—applications to oceans. Geophys Astrophys Fluid Dyn 48(1):169–192CrossRefGoogle Scholar
  90. Whitehead JA, Wang W (2008) A laboratory model of vertical ocean circulation driven by mixing. J Phys Oceanogr 38:1091–1106CrossRefGoogle Scholar
  91. Wunsch C, Ferrari R (2004) Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech 36:281–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN LaboratoryParisFrance
  2. 2.Department of OceanographyUniversity of Cape TownCape TownSouth Africa
  3. 3.Scripps Institution of OceanographyLa JollaUSA
  4. 4.Department of Marine Sciences and TechnologyBogor Agricultural UniversityBogorIndonesia

Personalised recommendations