Ocean Dynamics

, Volume 67, Issue 2, pp 165–189 | Cite as

Time-domain modeling of global ocean tides generated by the full lunisolar potential

Article

Abstract

Traditionally, ocean tides have been modeled in frequency domain with a forcing from selected tidal constituents. It is a natural approach; however, it implicitly neglects non-linearities of ocean dynamics. An alternative approach is time-domain modeling with a forcing given by the full lunisolar potential, i.e., all tidal waves are a priori included. This approach has been applied in several ocean tide models; however, some challenging tasks still remain, for example, assimilation of satellite altimetry data. In this paper, we introduce the assimilative scheme applicable in a time-domain model, which is an alternative to existing techniques used in assimilative ocean tide models. We present results from DEBOT, a global barotropic ocean tide model, which has two modes: DEBOT-h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. The accuracy of DEBOT in both modes is assessed through a series of tests against tide gauge data which demonstrate that DEBOT is comparable to state-of-the-art global ocean tide models for major tidal constituents. Furthermore, as signals of all tidal frequencies are included in DEBOT, we also discuss modeling of minor tidal constituents and non-linear compound tides. Our modeling approach can be useful for those applications where the frequency domain approach is not suitable.

Keywords

Ocean tides Tidal potential Time-domain modeling Global ocean models Data assimilation Minor tidal constituents 

References

  1. Accad Y, Pekeris CL (1978) Solution of the tidal equations for the M 2 and S 2 tides in the world oceans from a knowledge of the tidal potential alone. Phil Trans R Soc A 290(1368):235–266CrossRefGoogle Scholar
  2. Agnew DC (2007) Earth tides. In: Treatise on Geophysics, Elsevier, pp 163–195Google Scholar
  3. Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, p 19Google Scholar
  4. Arakawa A, Lamb VL (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Chang J (ed) Methods in Computational Physics, Vol. 17, Academic Press, pp 174–265Google Scholar
  5. Arbic BK, Garner ST, Hallberg RW, L SH (2004) The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res II 51:3069–3101. doi:10.1016/j.dsr2.2004.09.014 CrossRefGoogle Scholar
  6. Arbic BK, Mitrovica JX, MacAyeal DR, Milne GA (2008) On the factors behind large labrador sea tides during the last glacial cycle and the potential implications for heinrich events. Paleoceanography 23:PA3211. doi:10.1029/2007PA001573 CrossRefGoogle Scholar
  7. Arbic BK, Wallcraft AJ, Metzger EJ (2010) Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Model 32:175–187CrossRefGoogle Scholar
  8. Backhaus JO (1983) A semi-implicit scheme for the shallow water equations for application to shelf sea modeling. Cont Sh Res 2(4):243–254CrossRefGoogle Scholar
  9. Batchelor GK (1967) An Introduction to Fluid Dynamics. Cambridge Univ Press, Cambridge, UKGoogle Scholar
  10. Beardsley RC, Duda TF, Lynch JF, Irish JD, Ramp RS, Chiu CS, Tang TY, Yang YJ, Fang G (2004) Barotropic tide in the northeast South China Sea. IEEE J Ocean Eng 29:1075–1086CrossRefGoogle Scholar
  11. Carrère L, Lyard F, Cancet M, Guillot A, Roblou L (2012) FES 2012: a new global tidal model taking advantage of nearly 20 years of altimetry. paper presented at The Symposium 20 Years of Progress in Radar Altimetry, VeniceGoogle Scholar
  12. Cheng Y, Andersen OB (2011) Multimission empirical ocean tide modeling for shallow waters and polar seas. J Geophys Res 116:C11001. doi:10.1029/2011JC007172 CrossRefGoogle Scholar
  13. Doodson AT (1921) The harmonic development of the tide-generating potential. Proc R Soc A 100(704):305–329CrossRefGoogle Scholar
  14. Doodson AT, Warburg HD (1941) Admiralty manual of tides. H.M.S.O [for] the Hydrographic Department. Admiralty, LondonGoogle Scholar
  15. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204CrossRefGoogle Scholar
  16. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778CrossRefGoogle Scholar
  17. Egbert GD, Ray RD (2003) Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys Res Lett 30(17):1907. doi:10.1029/2003GL017676 CrossRefGoogle Scholar
  18. Egbert GD, Bennett AF, Foreman MGG (1994) TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res 99:24,821–24,852CrossRefGoogle Scholar
  19. Egbert GD, Ray RD, Bills BG (2004) Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J Geophys Res 109:C03003. doi:10.1029/2003JC001973 CrossRefGoogle Scholar
  20. Einšpigel D, Martinec Z (2015) A new derivation of the shallow water equations in geographical coordinates and their application to the global barotropic ocean model (the DEBOT model). Ocean Model 92:85–100CrossRefGoogle Scholar
  21. Emery W, Thompson R (1998) Data analysis methods in physical oceanography. Pergamon PressGoogle Scholar
  22. Fok HS (2012) Ocean tides modeling using satellite altimetry PhD thesisGoogle Scholar
  23. Fu LL, Cazenave A (eds) (2001) Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. Academic Press, San Diego, CaliforniaGoogle Scholar
  24. Green JAM, Nycander J (2013) A comparison of internal wave-drag parameterizations for tidal model. J Phys Oceanogr 43:104–119. doi:10.1175/JPO-D-12-023.1 CrossRefGoogle Scholar
  25. Griffiths SD, Peltier WR (2009) Modeling of polar ocean tides at the last glacial maximum: amplification, sensitivity, and climatological implications. J Climate:2905–2924. doi:10.1175/2008JCLI2540.1
  26. Hill DF, Griffiths SD, Peltier WR, Horton BP, Törnqvist TE (2011) High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. J Geophys Res 116(C10014). doi:10.1029/2010JC006896
  27. IHO (2006) Harmonic constants product specificationGoogle Scholar
  28. IOC, IHO, BODC (2003) Centenary edition of the GEBCO digital atlas. published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the OceansGoogle Scholar
  29. Jayne SR, St Laurent LC (2001) Parameterizing tidal dissipation over rough topography. Geophys Res Lett 28(5):811–814CrossRefGoogle Scholar
  30. Kaplan G, Bartlett J, Monet A, Bangert J, Puatua W (2011) User’s guide to NOVAS version F3.1. http://aa.usno.navy.mil/software/novas/novas_f/NOVAS_F3.1_Guide.pdf washington, DC: USNO
  31. Kuvshinov A, Olsen N (2005) 3-D modelling of the magnetic fields due to ocean tidal flow. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth Observation with CHAMP. Results from Three Years in Orbit. Springer-Verlag, Berlin, pp 359--366Google Scholar
  32. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) Volume 1: Temperature. In: Levitus S, Mishonov A (eds) World Ocean Atlas 2013, NOAA Atlas NESDIS, p 73Google Scholar
  33. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: Modern insights from FES 2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  34. Melchior P (1972) Earth tides and polar motions. In: Ritsema AR (ed) The Upper Mantle, vol 13. Elsevier, Amsterdam, chap, pp 361--372Google Scholar
  35. Melchior PJ (1983) The tides of the planet Earth, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  36. Müller M, Cherniawsky JY, Foreman MGG, von Storch JS (2012) Global map of M 2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys Res Lett 39(L19607). doi:10.1029/2012GL053320
  37. Nycander J (2005) Generation of internal waves in the deep ocean by tides. J Geophys Res 110(C10028). doi:10.1029/2004JC002487
  38. Parke ME (1982) O 1, P 1, N 2 models of the global ocean tide on an elastic earth plus surface potential and spherical harmonic decompositions for M 2, S 2, and K 1. Mar Geod 6(1):35–81CrossRefGoogle Scholar
  39. Parke ME, Hendershott MC (1980) M 2, S 2, K 1 models of the global ocean tide on an elastic earth. Mar Geod 3:379–408CrossRefGoogle Scholar
  40. Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer-Verlag, New YorkCrossRefGoogle Scholar
  41. Pekeris CL, Accad Y (1969) Solution of laplace’s equations for the M 2 tide in the world oceans. Phil Trans R Soc A A265:413–436CrossRefGoogle Scholar
  42. Ponchaut F, Lyard F, Le Provost C (2001) An analysis of the tidal signal in the WOCE sea level dataset. J Atmos Ocean Technol 18:77–91CrossRefGoogle Scholar
  43. Pond S, Pickard GL (1983) Introductory dynamical oceanography, 2nd edn. Butterworh-Heinemann, OxfordGoogle Scholar
  44. Ray RD (1998) Ocean self-attraction and loading in numerical tidal model. Mar Geod 21(3):181–192CrossRefGoogle Scholar
  45. Ray RD (1999) A global ocean tide model from Topex/Poseidon altimetry: GOT99.2. Tech. rep., Goddard Space Flight Center, Greenbelt, Maryland, nASA Tech. Memo. 209478Google Scholar
  46. Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys Res Oceans 118:4570–4584. doi:10.1002/jgrc.20336 CrossRefGoogle Scholar
  47. Ray RD, Egbert GD (2004) The global S 1 tide. J Phys Oceanogr 34:1922–1935CrossRefGoogle Scholar
  48. Ray RD, Egbert GD, Erofeeva SY (2011) Tide predictions in shelf and coastal waters: Status and prospects. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal Altimetry. Springer-Verlag, Berlin, pp 191-216Google Scholar
  49. Richter A, Mendoza L, Perdomo R, Hormaechea J, Savcenko R, Bosch W, Dietrich R (2012) Pressure tide gauge records from the Atlantic shelf off Tierra del Fuego, southernmost South America. Cont Shelf Res 42:20–29CrossRefGoogle Scholar
  50. Sammari C, Koutitonsky VG, Moussa M (2006) Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia. Cont Shelf Res 26:338–350CrossRefGoogle Scholar
  51. Savcenko R, Bosch W (2012) EOT11a — Empirical ocean tide model from multi-mission satellite altimetry. Tech. rep., Deutsches Geodätisches Forschungsinstitut, München, dGFI Report No. 89Google Scholar
  52. Schindelegger M, Einšpigel D, Salstein D, Böhm J (2016) The global S 1 tide in Earth’s nutation. Surv Geophys doi:10.1007/s10712-016-9365-3
  53. Schwiderski EW (1979) Global ocean tides: Part II. The semidiurnal principal lunar tide 884 (M 2). Atlas of tidal charts and maps. Tech. rep. Naval Surface Weapons Center. Dahlgren, VirginiaGoogle Scholar
  54. Schwiderski EW (1980) Ocean tides. Part II: A hydrodynamic interpolation. Mar Geod 3:219–255CrossRefGoogle Scholar
  55. Seeber G (2003) Satellite Geodesy, 2nd edn. Walter de Gruyter, Berlin, GermanyCrossRefGoogle Scholar
  56. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404CrossRefGoogle Scholar
  57. Shchepetkin AF, McWilliams JC (2008) Computational kernel algorithms for fine-scale, multi-process, long-time oceanic simulations. In: Temam R, Tribbia J (eds) Handbook of Numerical Analysis: Computational Methods for the Ocean and the Atmosphere, Elsevier Science, pp. 121–183, iSBN: 978-0-444-51893-4Google Scholar
  58. Shum CK, Woodworth PL, Andersen OB, Egbert GD, Francis O, King C, Klosko SM, Le Provost C, Li X, Molines JM, Parke ME, Ray RD, Schlax MG, Stammer D, Tierney CC, Vincent P, Wunsch CI (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11):173–194CrossRefGoogle Scholar
  59. Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep-Sea Res II 51:3043–3068. doi:10.1016/j.dsr2.2004.09.015 CrossRefGoogle Scholar
  60. Smith AJE (1999) Application of satellite altimetry for global ocean tide modeling PhD thesis, Delft University of Technology, DelftGoogle Scholar
  61. Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrère L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Müller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52. doi:10.1002/2014RG000450
  62. Taguchi E, Zahel W, Stammer D (2014) Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. J Geophys Res Oceans 119:4573–4592CrossRefGoogle Scholar
  63. Thomas M, Sündermann J (1999) Tides and tidal torques of the world ocean since the last glacial maximum. J Geophys Res 104(C2):3159–3183CrossRefGoogle Scholar
  64. Tyler RS, Maus S, Lühr H (2003) Satellite observations of magnetic fields due to ocean tidal flow. Science 299:239–240CrossRefGoogle Scholar
  65. Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellation and ocean tides: Aliasing effects. Geophys J Int 181:789–805Google Scholar
  66. Vlasenko V, Stashchuk N, Hutter K (2005) Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge, U.K, Cambridge Univ PressCrossRefGoogle Scholar
  67. Weis P (2006) Ocean tides and the Earth’s rotation — results of a high-resolving ocean model force by the lunisolar tidal potential. University of Hamburg, PhD thesisGoogle Scholar
  68. Weis P, Thomas M, Sündermann J (2008) Broad frequency tidal dynamics simulated by a high-resolution global ocean tide model forced by ephemerides. J Geophys Res 113(C10). doi:10.1029/2007JC004556
  69. Zahel W (1995) Assimilating ocean tide determined data into global tidal models. J Mar Syst 6:3–13CrossRefGoogle Scholar
  70. Zaron ED, Egbert GD (2006) Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. J Phys Oceanogr 36:1019–1035CrossRefGoogle Scholar
  71. Zweng MM, Reagan JR, Antonov JsI, Locarnini RA, Mishonov AV, Boyer TP, Garcia HE, Baranova OK, Johnson DR, Seidov D, Biddle MM (2013) Volume 2: Salinity. In: Levitus S, Mishonov A (eds) World Ocean Atlas 2013, NOAA Atlas NESDIS, p 74Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Cosmic Physics, Dublin Institute for Advanced StudiesDublin 2Republic of Ireland
  2. 2.Department of GeophysicsCharles UniversityPraha 8Czech Republic

Personalised recommendations