Ocean Dynamics

, Volume 67, Issue 1, pp 81–101 | Cite as

Effects of wave-induced forcing on a circulation model of the North Sea

  • Joanna Staneva
  • Victor Alari
  • Øyvind Breivik
  • Jean-Raymond Bidlot
  • Kristian Mogensen
Article
Part of the following topical collections:
  1. Topical Collection on the 14th International Workshop on Wave Hindcasting and Forecasting in Key West, Florida, USA, November 8-13, 2015

Abstract

The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25–27 October 2013), and about a month later, the storm Xaver (5–7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20–30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.

Keywords

Wave-current interaction NEMO WAM North Sea Surge predictions Coastal forecasts Stokes drift 

Notes

Acknowledgements

This work was supported by CMEMS COPERNICUS Grant WAVE2NEMO and the FP7 project MyWave (grant no. 284455). ØB is grateful for the additional support of the Norwegian Research Council through the projects RETROSPECT (grant no. 244262) and CIRFA (grant no. 237906). The authors are thankful to W. Koch for preparing the model forcing and A. Behrens for assisting with preparing some of the plots. We are also thankful to the German Federal Maritime and Hydrographic Agency (BSH) for providing the in-situ measurement data.

References

  1. Aiki H, Greatbatch RJ (2013) The vertical structure of the surface wave radiation stress for circulation over a sloping bottom as given by thickness-weighted-mean theory. J Phys Oceanogr 43(1):149–164CrossRefGoogle Scholar
  2. Aiki H, Greatbatch RJ (2014) A new expression for the form stress term in the vertically Lagrangian mean framework for the effect of surface waves on the upper-ocean circulation. J Phys Oceanogr 44(1):3–23CrossRefGoogle Scholar
  3. Alari V, Staneva J, Breivik O, Bidlot JR, Mogensen K and Janssen PAEM (2015) Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model. Submitted to Ocean DynamicsGoogle Scholar
  4. Ardhuin F, Rascle N, Belibassakis K (2008) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell. 20(1):35–60CrossRefGoogle Scholar
  5. Ardhuin F, Marie L, Rascle N, Forget P, Roland A (2009) Observation and estimation of Lagrangian, stokes and Eulerian currents induced by wind and waves at the sea surface. J Phys Oceanogr 39:2820–2838. doi:10.1175/2009JPO4169.1 CrossRefGoogle Scholar
  6. Ardhuin F, Rogers E, Babanin AV, Filipot J-F, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre J-M, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40:1917–1941CrossRefGoogle Scholar
  7. Babanin AV (2006) On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys Res Lett 33(20):6. doi:10.1029/2006GL027308 CrossRefGoogle Scholar
  8. Babanin A (2011) Breaking and dissipation of ocean surface waves. Cambridge University Press, Cambridge, p 480Google Scholar
  9. Babanin AV, Chalikov D (2012) Numerical investigation of turbulence generation in non-breaking potential waves. J Geophys Res 117:C00J17. doi:10.1029/2012JC007929 Google Scholar
  10. Babanin AV, Haus BK (2009) On the existence of water turbulence induced by nonbreaking surface waves. J Phys Oceanogr 39(10):2675–2679. doi:10.1175/2009JPO4202.1 CrossRefGoogle Scholar
  11. Babanin AV, Chalikov D, Young IR, Savelyev I (2010) Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J Fluid Mech 644:433–463CrossRefGoogle Scholar
  12. Barbariol F, Benetazzo A, Carniel S, Sclavo M (2013) Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renew Energ 60:462–471CrossRefGoogle Scholar
  13. Benetazzo A, Carniel S, Sclavo M, Bergamasco A (2013) Wave-current interaction: effect on the wave field in a semi-enclosed basin. Ocean Model 70:152–165CrossRefGoogle Scholar
  14. Bennis A, Ardhuin F (2011) Comments on the depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 41:2008–2012CrossRefGoogle Scholar
  15. Bertin X, Li K, Roland A, Bidlot JR (2015) The contribution of short-waves in storm surges: two case studies in the Bay of Biscay. Cont Shelf Res 96:1–15. doi:10.1016/j.csr.2015.01.005 CrossRefGoogle Scholar
  16. Bidlot J-R, Janssen P, Abdalla S (2007) A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Memo. 509, Eur. Cent. for Medium-Range Weather Forecasts, ReadingGoogle Scholar
  17. Bolaños R, Osuna P, Wolf J, Monabiu J, Sanchez-Arcilla A (2011) Development of the POLCOMS-WAM current-wave model. Ocean Model 36:102–115CrossRefGoogle Scholar
  18. Bolaños R, Brown JM, Souza AJ (2014) Wave-current interactions in a tide dominated estuary. Cont Shelf Res 87:109–123. doi:10.1016/j.csr.2014.05.009 CrossRefGoogle Scholar
  19. Bouillon S, Maqueda MA, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Model 27:174–184CrossRefGoogle Scholar
  20. Breivik Ø, Janssen P, Bidlot JR (2014) Approximate stokes drift profiles in deep water. J Phys Oceanogr 44(9):2433–2445 . doi:10.1175/JPO-D-14-0020.1arXiv:1406.5039CrossRefGoogle Scholar
  21. Breivik O, Mogensen K, Bidlot JR, Balmaseda MA, Janssen PAEM (2015) Surface wave effects in the NEMO Ocean model: forced and coupled experiments. Journal of Geoph. Research C: Oceans 120(4):2973–2992CrossRefGoogle Scholar
  22. Breivik Ø, Bidlot J-R, Janssen PA (2016) A stokes drift approximation based on the Phillips spectrum. Ocean Model 100:49–56. doi:10.1016/j.ocemod.2016.01.005 CrossRefGoogle Scholar
  23. Brown JM, Wolf J (2009) Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress. Cont Shelf Res 29(10):1329–1342CrossRefGoogle Scholar
  24. Brown JM, Bolaños R, Wolf J (2011) Impact assessment of advanced coupling features in a tide-surge-wave model, POLCOMS-WAM, in a shallow water application. J Mar Syst 87(1):13–24CrossRefGoogle Scholar
  25. Brown JM, Bolaños R, Wolf J (2013) The depth-varying response of coastal circulation and water levels to 2D radiation stress when applied in a coupled wave-tide-surge modelling system during an extreme storm. Coast Eng 82:102–113CrossRefGoogle Scholar
  26. Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81(350):639–640CrossRefGoogle Scholar
  27. Craig PD, Banner ML (1994) Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr 24(12):2546–2559CrossRefGoogle Scholar
  28. Davies AM, Kwong SCM, Flather RA (2000) On determining the role of wind wave turbulence and grid resolution upon computed storm driven currents. Cont Shelf Res 20:1825–1888Google Scholar
  29. Dean RG, Dalrymple RA (1991) Water waves mechanics for engineers and scientists. World Scientific, LondonGoogle Scholar
  30. Deutschländer T, Friedrich K, Haeseler S and Lefebvre C (2013) Severe storm XAVER across northern Europe from 5 to 7 December 2013, December, 2013 DWD report. Available from https://www.dwd.de/EN/ourservices/specialevents/storms
  31. Dieterich C, Schimanke S, Wang S, Väli G, Liu Y, Hordoir R, Axell L, Hoeglund A, Meier HEM (2013) Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4-NEMO. Rep. Oceanogr 4, 80 ppGoogle Scholar
  32. Donelan MA, Curcic M, Chen SS, Magnusson AK (2012) Modeling waves and wind stress. J Geophys Res 117:C00J23. doi:10.1029/2011JC007787 CrossRefGoogle Scholar
  33. Drennan WM, Donelan MA, Terray EA, Katsaros KB (1996) Oceanic turbulence dissipation measurements in SWADE. J Phys Oceanogr 26(5):808–815CrossRefGoogle Scholar
  34. Fan Y, Ginis I, Hara T (2009) The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. J Phys Oceanogr 39(4):1019–1034. doi:10.1175/2008JPO4066.1 CrossRefGoogle Scholar
  35. Fenoglio-Marc L, Scharroo R, Annunziato A, Mendoza L, Becker M, Lillibridge J (2015) Cyclone Xaver seen by geodetic observations. Geophys Res Lett 42:9925–9932. doi:10.1002/2015GL065989 CrossRefGoogle Scholar
  36. Flather RA (2001) Storm surges. In: Steele J, Thorpe S, Turekian K (eds) Encyclopedia of ocean sciences. Academic, San Diego, pp. 2882–2892CrossRefGoogle Scholar
  37. Grashorn S, Lettmann KA, Wolff J-O, Badewien TH, Stanev EV (2015) East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model. Ocean Dyn 65(3):419–434Google Scholar
  38. Günther, H, Hasselmann S, Janssen PAEM (1992) The WAM model cycle 4.0. user manual technical report no. 4 Deutsches Klimarechenzentrum, Hamburg, Germany, 102 pagesGoogle Scholar
  39. Haeseler, S and C Lefebvre (2013) Heavy storm CHRISTIAN on 28 October 2013, DWD report, November, 2013. Available from https://www.dwd.de/EN/ourservices/specialevents/storms
  40. Hasselmann K (1970) Wave-driven inertial oscillations. Geophys Astrophys Fluid Dyn 1(3–4):463–502. doi:10.1080/03091927009365783 CrossRefGoogle Scholar
  41. Hersbach H, Janssen P (1999) Improvements of the short fetch behaviour in the WAM model. J Atmos Oceanic Techn 16:884–892CrossRefGoogle Scholar
  42. Hewson, T, L Magnusson, Ø Breivik, F Prates, I Tsonevsky, H d Vries (2014). Windstorms in northwest Europe in late 2013, European Centre for Medium-Range Weather Forecasts, Newsletter 139, pp 22–28. Available from https://www.ecmwf.int/en/elibrary/14582-newsletter-no139-spring-2014
  43. Hordoir R, An BW, Haapala J, Dieterich C, Schimanke S, Hoeglund A, Meier HEM (2013) A 3D ocean modelling configuration for Baltic & North Sea exchange analysis. Rep Oceanogr 48:–72Google Scholar
  44. Huang CJ, Qiao F, Song Z, Ezer T (2011) Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme. J Geophys Res 116(C1):C01007. doi:10.1029/2010JC006320 CrossRefGoogle Scholar
  45. Janssen P (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr 21(11):1631–1642. doi:10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
  46. Janssen PAEM (2012) Ocean wave effects on the daily cycle in SST. J Geophys Res 117:C00J32. doi:10.1029/2012JC007943201 CrossRefGoogle Scholar
  47. Janssen PAEM (1989) Wave-induced stress and the drag of air flow over sea waves. J Phys Oceanogr 19:745–754CrossRefGoogle Scholar
  48. Janssen F, Schrum C, Backhaus JO (1999) A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Deutsche Hydrographische Zeitschrift 51(9 Supplement):5–245CrossRefGoogle Scholar
  49. Janssen, PAEM, Breivik, O, Mogensen, K, Vitart, F, Balmaseda, M, Bidlot, J-R, Keeley, S, Leutbecher, M, Magnusson, L, Molteni, F, (2013) Air-sea interaction and surface waves, ECMWF. Technical Memorandum 712, 34 ppGoogle Scholar
  50. Jones JE, Davies AM (1998) Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave –current interaction. Cont Shelf Res 18:201–251CrossRefGoogle Scholar
  51. Katsafados P, Papadopoulos A, Korres G, Varlas G (2016) A fully coupled atmosphere-ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms. Geosci Model Dev 9:161–173. doi:10.5194/gmd-9-161 CrossRefGoogle Scholar
  52. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge 560 ppCrossRefGoogle Scholar
  53. Kumar N, Voulgaris G, Warner JC, Olabarrieta M (2012) Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modelling system for inner shelf and surf zone applications. Ocean Model 47:65–95CrossRefGoogle Scholar
  54. Lamb H, Frydendahl K (1991) Historic storms of the North Sea. Cambridge University Press, British Isles and Northwest Europe 208 pagesGoogle Scholar
  55. Lane EM, Restrepo JM, McWilliams JC (2007) Wave-current interaction: a comparison of radiation-stress and vortex-force representations. J Phys Oceanogr 37(5):1122–1141CrossRefGoogle Scholar
  56. Longuet-Higgins MS, Stewart RW (1961) The changes in amplitude of short gravity waves on steady non-uniform currents. J Fluid Mech 10:529–549CrossRefGoogle Scholar
  57. Longuet-Higgins MS, Stewart RW (1962) Radiation stress and mass transport in gravity waves, with application to surf beats. J Fluid Mech 13:481–504CrossRefGoogle Scholar
  58. Longuet-Higgins MS, Stewart RW (1964) Radiation stresses in water waves: a physical discussion with applications. Deep-Sea Res 11:529–562Google Scholar
  59. Madec G (2008) NEMO ocean engine. Note du Pole de modelisation. Institut Pierre-Simon Laplace (IPSL), France No. 27, 217 ppGoogle Scholar
  60. Mastenbroek C, Burgers G, Janssen PAEM (1993) The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J Phys Oceanogr 23:1856–1866CrossRefGoogle Scholar
  61. McWilliams J, Restrepo J, Lane E (2004) An asymptotic theory for the interaction of waves and currents in coastal waters. J Fluid Mech 511:135–178CrossRefGoogle Scholar
  62. Mellor G (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33(9):1978–1989CrossRefGoogle Scholar
  63. Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34:693–698CrossRefGoogle Scholar
  64. Mellor G (2005) Some consequences of the three-dimensional current and surface equations. J Phys Oceanogr 35(11):2291–2298CrossRefGoogle Scholar
  65. Mellor G (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38(11):2587–2596CrossRefGoogle Scholar
  66. Michaud H, Marsaleix P, Leredde Y, Estournel C, Bourrin F, Lyard F, Mayet C, Ardhuin F (2012) Three-dimensional modelling of wave-induced current from surf zone to the inner shelf. Ocean Sci 8:657–681CrossRefGoogle Scholar
  67. Moghimi S, Klingbeil K, Gräwe U, Burchard H (2013) A direct comparison of a depth-dependent radiation stress formulation and a vortex force formulation within a three-dimensional coastal ocean model. Ocean Model 70:132–144CrossRefGoogle Scholar
  68. O’Dea EJ, Arnold AK, Edwards KP, Furner HP, Martin MJ, Siddorn JR, Storkey D, While J, Holt JT, Liu H (2012) An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf. J Oper Oceanogr 5:3–17CrossRefGoogle Scholar
  69. Pawlowicz R, Beardsley B, Lent S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput Geosci 28(8):929–937. doi:10.1016/S0098-3004(02) CrossRefGoogle Scholar
  70. Pham TV, Brauch J, Dieterich C, Frueh B, Ahrens B (2014) New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic seas. Oceanologia 56(2):167–189CrossRefGoogle Scholar
  71. Polton JA, Lewis DM, Belcher SE (2005) The role of wave-induced Coriolis-stokes forcing on the wind-driven mixed layer. J Phys Oceanogr 35:444–457. doi:10.1175/JPO2701.1 CrossRefGoogle Scholar
  72. Röhrs J, Christensen KH, Hole LR, Broström G, Drivdal M, Sundby S (2012) Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn 62:1519–1533CrossRefGoogle Scholar
  73. Röhrs J, Sperrevik AK, Breivik Ø, Broström G, Christensen KH (2015) Comparison of HF radar measurements with Eulerian and Lagrangian surface currents. Ocean Dyn 65:679–690. doi:10.1007/s10236-015-0828-8 CrossRefGoogle Scholar
  74. Roland A, Cucco A, Ferrarin C, Hsu T, Liau J, Ou S, Umgiesser G, Zanke U (2009) On the development and verification of a 2-D coupled wave-current model on unstructured meshes. J Mar Syst 78:244–254CrossRefGoogle Scholar
  75. Stacey MW (1999) Simulations of the wind-forced near-surface circulation in Knight Inlet: a parameterization of the roughness length. J Phys Oceanogr 29:1363–1367Google Scholar
  76. Stokes GG (1847) On the theory of oscillatory waves. Trans Camb Philos Soc 8:441–455Google Scholar
  77. Saetra O, Albretsen J, Janssen P (2007) Sea-state-dependent momentum fluxes for ocean modeling. J Phys Oceanogr 37(11):2714–2725. doi:10.1175/2007JPO3582.1 CrossRefGoogle Scholar
  78. Siddorn J, Good SA, Harris CM, Lewis HW, Maksymczuk J, Martin MJ, Saulter A (2016) Research priorities in support of ocean monitoring and forecasting at the Met Office. Ocean Sci 12:217–231. doi:10.5194/os-12-217-201 CrossRefGoogle Scholar
  79. Staneva J, Wahle K Günther H and Stanev E, (2015) Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight, MS No.: OS-2015-86. Special Issue: operational oceanography in Europe 2014 in support of blue and green growth, 12, 3169–3197Google Scholar
  80. Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, Williams AJ, Hwang PA, Kitaigorodskii SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26(5):792–807CrossRefGoogle Scholar
  81. Uchiyama Y, McWilliams J, Shchepetkin A (2010) Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone. Ocean Modell 34:16–35CrossRefGoogle Scholar
  82. Viitaka M, Maljutenko I, Alari V, Suursaar U, Rikka S, Lagemaa P (2016) The impact of surface currents and sea level on the wave field evolution during St. Jude storm in the eastern Baltic Sea. Oceanologia. doi:10.1016/j.oceano.2016.01.004 Google Scholar
  83. WAMDI Group (1988) The WAM model–a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810CrossRefGoogle Scholar
  84. Weber JEH, Brostrom G, Saetra O (2006) Eulerian versus Lagrangian approaches to the wave-induced transport in the upper ocean. J Phys Oceanogr 31:2106–2118CrossRefGoogle Scholar
  85. Whitham GB (1974) Linear and nonlinear waves. Wiley, New YorkGoogle Scholar
  86. Wolf J, Brown JM, Bolaños R, Hedges T (2011) Waves in coastal and estuarine waters. In: Wolanski E, McLusky D (eds) Treatise on estuarine and coastal science, vol 2. Elsevier, Amsterdam, pp. 171–212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joanna Staneva
    • 1
  • Victor Alari
    • 1
    • 2
  • Øyvind Breivik
    • 3
  • Jean-Raymond Bidlot
    • 4
  • Kristian Mogensen
    • 4
  1. 1.Institute for Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Marine Systems InstituteTallinn University of TechnologyTallinnEstonia
  3. 3.Norwegian Meteorological Institute and Geophysical InstituteUniversity of BergenBergenNorway
  4. 4.European Centre for Medium-Range Weather Forecasts (ECMWF)ReadingUK

Personalised recommendations