Ocean Dynamics

, Volume 66, Issue 12, pp 1715–1732 | Cite as

Tide-surge and wave interaction in the Gulf of Maine during an extratropical storm

Part of the following topical collections:
  1. Topical Collection on the 14th International Workshop on Wave Hindcasting and Forecasting in Key West, Florida, USA, November 8-13, 2015


The fully coupled spectral wave and circulation model SWAN + ADCIRC was applied to investigate tide-surge and wave interaction in the Gulf of Maine during the extratropical storm on Patriot’s Day of 2007. Significant tide-surge and wave interaction was found over Georges Bank and in the coastal areas. Over Georges Bank, the wave-induced current reached 0.2 m/s at the storm peak, accounting for 17 % of the total depth-averaged current. In Saco Bay, the current was dominated by wave-induced current with a magnitude up to 1.0 m/s during the storm. Two clockwise circulation gyres were found to form and sustain over a period of 26 hours during the storm in the bay. They were driven by spatial variations of wave height, direction and the resulting wave radiation stress gradient. Wave setup reached 0.2 m at the storm peak along the coast of Saco Bay. In Saco Bay, wave energy dissipation was reduced and wave height increased due to the increased water depth at high tide and surge. Therefore, wave height was modulated by tide and surge accordingly along the coast. As a result, wave setup and wave-induced current in the bay were also modulated by tide and surge. During the tidal cycle at the storm peak, wave setup increased with tidal level and the maximum wave setup coincided with high tide.


SWAN ADCIRC The Gulf of Maine Tide-surge Waves Georges Bank Saco Bay Wave induced current 


  1. Ardhuin F, Rascle N, Belibassakis KA (2008) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model 20(1):35–60. doi:10.1016/j.ocemod.2007.07.001 CrossRefGoogle Scholar
  2. Beardsley R, Chen C, Xu Q (2013) Coastal flooding in Scituate (MA): a FVCOM study of the Dec. 27, 2010 nor’easter. J Geophys Res-Oceans 118:6030–6045. doi:10.1002/2013JC008862 CrossRefGoogle Scholar
  3. Bennis AC, Ardhuin F, Dumas F (2011) On the coupling of wave and three-dimensional circulation models: choice of theoretical framework, practical implementation and adiabatic tests. Ocean Model 40(3):260–272. doi:10.1016/j.ocemod.2011.09.003 CrossRefGoogle Scholar
  4. Bernier NB, Thompson KR (2007) Tide-surge interaction off the east coast of Canada and northeastern United States. J Geophys Res-Oceans 112:C06008. doi:10.1029/2006JC003793 CrossRefGoogle Scholar
  5. Blain CA, Westerink JJ, Luettich RA Jr (1994) The influence of domain size on the response characteristics of a hurricane storm surge model. J Geophys Res-Oceans 99(C9):18467–18479. doi:10.1029/94JC01348 CrossRefGoogle Scholar
  6. Bolaños R, Brown JM, Souza AJ (2014) Wave–current interactions in a tide dominated estuary. Cont Shelf Res 87:109–123. doi:10.1016/j.csr.2014.05.009 CrossRefGoogle Scholar
  7. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res-Oceans 104(C4):7649–7666. doi:10.1029/98JC02622 CrossRefGoogle Scholar
  8. Brothers LL, Belknap DF, Kelley JT, Janzen CD (2008) Sediment transport and dispersion in a cool-temperate estuary and embayment, Saco River estuary, Maine, USA. Mar Geol 251(3):183–194. doi:10.1016/j.margeo.2008.02.004 CrossRefGoogle Scholar
  9. Brown JM, Wolf J (2009) Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress. Cont Shelf Res 29(10):1329–1342. doi:10.1016/j.csr.2009.03.004 CrossRefGoogle Scholar
  10. Brown JM, Bolaños R, Wolf J (2013) The depth-varying response of coastal circulation and water levels to 2D radiation stress when applied in a coupled wave–tide–surge modelling system during an extreme storm. Coast Eng 82:102–113. doi:10.1016/j.coastaleng.2013.08.009 CrossRefGoogle Scholar
  11. Bunya S, Dietrich JC, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Jensen R, Resio DT, Luettich RA Jr, Dawson C, Cardone VJ, Cox AT, Powell MD, Westerink HJ, Roberts HJ (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: model development and validation. Mon Weather Rev 138(2):345–377. doi:10.1175/2009MWR2906.1 CrossRefGoogle Scholar
  12. Charnock H (1955) Wind stress on a water surface. Q J Roy Meteor Soc 81(350):639–640. doi:10.1002/qj.49708135027 CrossRefGoogle Scholar
  13. Chen C, Beardsley RC, Luettich RA Jr, Westerink JJ, Wang H, Perrie W, Toulany B (2013) Extratropical storm inundation testbed: intermodel comparisons in Scituate, Massachusetts. J Geophys Res-Oceans 118:5054–5073. doi:10.1002/jgrc.20397 CrossRefGoogle Scholar
  14. Chen Q, Wang L, Tawes R (2008) Hydrodynamic response of northeastern Gulf of Mexico to hurricanes. Estuar Coast 31(6):1098–1116. doi:10.1007/s12237-008-9089-9 CrossRefGoogle Scholar
  15. Christoffersen JB, Jonsson IG (1985) Bed friction and dissipation in a combined current and wave motion. Ocean Eng 12(5):387–423. doi:10.1016/0029-8018(85)90002-2 CrossRefGoogle Scholar
  16. Craig PD, Banner ML (1994) Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr 24(12):2546–2559. doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2 CrossRefGoogle Scholar
  17. Dietrich JC, Bunya S, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Jensen R, Resio DT, Luettich RA Jr, Dawson C, Cardone VJ, Cox AT, Powell MD, Westerink HJ, Roberts HJ (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: synoptic description and analysis of hurricanes Katrina and Rita. Mon Weather Rev 138(2):378–404. doi:10.1175/2009MWR2907.1 CrossRefGoogle Scholar
  18. Dietrich JC, Tanaka S, Westerink JJ, Dawson CN, Luettich RA Jr, Zijlema M, Smith JM, Westerink LG, Westerink HJ (2012) Performance of the unstructured-mesh, SWAN + ADCIRC model in computing hurricane waves and surge. J Sci Comput 52(2):468–497. doi:10.1007/s10915-011-9555-6 CrossRefGoogle Scholar
  19. Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA Jr, Stone GW (2011) Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng 58(1):45–65. doi:10.1016/j.coastaleng.2010.08.001 CrossRefGoogle Scholar
  20. Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33(5):1182–1190. doi:10.4319/lo.1988.33.5.1182 CrossRefGoogle Scholar
  21. Garratt JR (1977) Review of drag coefficients over oceans and continents. Mon Weather Rev 105(7):915–929. doi:10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2 CrossRefGoogle Scholar
  22. Grant WD, Madsen OS (1979) Combined wave and current interaction with a rough bottom. J Geophys Res-Oceans 84(C4):1797–1808. doi:10.1029/JC084iC04p01797 CrossRefGoogle Scholar
  23. Greenberg DA (1983) Modelling the mean barotropic circulation in the Bay of Fundy and Gulf of Maine. J Phys Oceanogr 13(5):886–904. doi:10.1175/1520-0485(1983)013<0886:MTMBCI>2.0.CO;2 CrossRefGoogle Scholar
  24. Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman P et al (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institute, DelftGoogle Scholar
  25. Haus BK (2007) Surface current effects on the fetch-limited growth of wave energy. J Geophys Res-Oceans 112:C03003. doi:10.1029/2006JC003924 CrossRefGoogle Scholar
  26. Hill HW, Kelley JT, Belknap DF, Dickson SM (2004) The effects of storms and storm-generated currents on sand beaches in southern Maine, USA. Mar Geol 210(1):149–168. doi:10.1016/j.margeo.2004.05.008 CrossRefGoogle Scholar
  27. Janssen PA (1989) Wave-induced stress and the drag of air flow over sea waves. J Phys Oceanogr 19(6):745–754. doi:10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2 CrossRefGoogle Scholar
  28. Janssen PA (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr 21(11):1631–1642. doi:10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2 CrossRefGoogle Scholar
  29. Jenkins AD (1986) A theory for steady and variable wind-and wave-induced currents. J Phys Oceanogr 16(8):1370–1377. doi:10.1175/1520-0485(1986)016<1370:ATFSAV>2.0.CO;2 CrossRefGoogle Scholar
  30. Jenkins AD (1987a) A Lagrangian model for wind-and wave-induced near-surface currents. Coast Eng 11(5):513–526. doi:10.1175/1520-0485(1986)016<1370:ATFSAV>2.0.CO;2 CrossRefGoogle Scholar
  31. Jenkins AD (1987b) Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity. J Phys Oceanogr 17(7):938–951. doi:10.1175/1520-0485(1987)017<0938:WAWICI>2.0.CO;2 CrossRefGoogle Scholar
  32. Jenkins AD (1989) The use of a wave prediction model for driving a near-surface current model. Deutsche Hydrografische Zeitschrift 42(3–6):133–149. doi:10.1007/BF02226291 CrossRefGoogle Scholar
  33. Johnson HK, Højstrup J, Vested HJ, Larsen SE (1998) On the dependence of sea surface roughness on wind waves. J Phys Oceanogr 28(9):1702–1716. doi:10.1175/1520-0485(1998)028<1702:OTDOSS>2.0.CO;2 CrossRefGoogle Scholar
  34. Kelley JT, Barber DC, Belknap DF, FitzGerald DM, van Heteren S, Dickson SM (2005) Sand budgets at geological, historical and contemporary time scales for a developed beach system, Saco Bay, Maine, USA. Mar Geol 214(1):117–142. doi:10.1016/j.margeo.2004.10.027 CrossRefGoogle Scholar
  35. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1996) Dynamics and modelling of ocean waves. Cambridge university press, CambridgeGoogle Scholar
  36. Longuet-Higgins MS, Stewart RW (1961) The changes in amplitude of short gravity waves on steady non-uniform currents. J Fluid Mech 10:529–549. doi:10.1017/S0022112061000342 CrossRefGoogle Scholar
  37. Longuet-Higgins MS, Stewart RW (1962) Radiation stress and mass transport in gravity waves, with application to “surf beats”. J Fluid Mech 13:481–504. doi:10.1017/S0022112062000877 CrossRefGoogle Scholar
  38. Longuet-Higgins MS, Stewart RW (1964) Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res 11(4):529–562. doi:10.1016/0011-7471(64)90001-4 Google Scholar
  39. Luettich RA Jr, Westerink JJ (2006) ADCIRC: A (parallel) advanced circulation model for oceanic, coastal and estuareine waters; users manual for version 51. http://adcirc.org/home/documentation/users-manual-v51
  40. Luettich RA Jr, Hu S, Westerink JJ (1994) Development of the direct stress solution technique for three-dimensional hydrodynamic models using finite elements. Int J Numer Methods Fluids 19(4):295–319. doi:10.1002/fld.1650190403 CrossRefGoogle Scholar
  41. Luettich RA Jr, Westerink JJ, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. U.S. Army Corps of Engineers Technical Report DRP-92-6. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA261608
  42. Marrone JF (2008) Evaluation of impacts of the Patriots’ Day storm (April 15–18, 2007) on the New England coastline. Solutions to Coastal Disasters: 507–517. doi: 10.1061/40968(312)46Google Scholar
  43. Mellor G (2005) Some consequences of the three-dimensional current and surface wave equations. J Phys Oceanogr 35(11):2291–2298. doi:10.1175/JPO2794.1 CrossRefGoogle Scholar
  44. Mellor G (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38(11):2587–2596. doi:10.1175/2008JPO3971.1 CrossRefGoogle Scholar
  45. Moon IJ, Ginis I, Hara T (2004b) Effect of surface waves on air-sea momentum exchange. Part II: behavior of drag coefficient under tropical cyclones. J Atmos Sci 61(19):2334–2348. doi:10.1175/1520-0469(2004)061<2334:EOSWOA>2.0.CO;2 CrossRefGoogle Scholar
  46. Moon IJ, Hara T, Ginis I, Belcher SE, Tolman HL (2004a) Effect of surface waves on air-sea momentum exchange. Part I: effect of mature and growing seas. J Atmos Sci 61(19):2321–2333. doi:10.1175/1520-0469(2004)061<2321:EOSWOA>2.0.CO;2 CrossRefGoogle Scholar
  47. Mukai AY, Westerink JJ, Luettich RA Jr, Mark D (2001) Eastcoast2001, a tidal constituent database for the Western North Atlantic Ocean, Gulf of Mexico and Caribbean Sea. Technical Report ERDC/CHL TR-02-24, U.S. Army Corps of Engineers. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA408733
  48. Nicolle A, Karpytchev M, Benoit M (2009) Amplification of the storm surges in shallow waters of the Pertuis Charentais (Bay of Biscay, France). Ocean Dyn 59(6):921–935. doi:10.1007/s10236-009-0219-0 CrossRefGoogle Scholar
  49. Ozer P, Padilla-Hernández R, Monbaliu J, Fanjul EA, Albiach JCC, Osuna P, Yu JCS, Wolf J (2000) A coupling module for tides, surges and waves. Coast Eng 41(1–3):95–124. doi:10.1016/S0378-3839(00)00028-4 CrossRefGoogle Scholar
  50. Panchang VG, Jeong C, Li D (2008) Wave climatology in coastal Maine for aquaculture and other applications. Estuar Coast 31(2):289–299. doi:10.1007/s12237-007-9016-5 CrossRefGoogle Scholar
  51. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28(8):929–937. doi:10.1016/S0098-3004(02)00013-4 CrossRefGoogle Scholar
  52. Perrie W, Tang CL, Hu Y, DeTracy BM (2003) The impact of waves on surface currents. J Phys Oceanogr 33(10):2126–2140. doi:10.1175/1520-0485(2003)033<2126:TIOWOS>2.0.CO;2 CrossRefGoogle Scholar
  53. Pettigrew NR, Churchill JH, Janzen CD, Mangum LJ, Signell RP, Thomas AC, Townsend DW, Wallinga JP, Xue H (2005) The kinematic and hydrographic structure of the Gulf of Maine coastal current. Deep-Sea Res Pt II 52(19):2369–2391. doi:10.1016/j.dsr2.2005.06.033 CrossRefGoogle Scholar
  54. Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions: 2. Verification. J Geophys Res-Oceans 104(C4):7649–7666. doi:10.1029/1998JC900123 CrossRefGoogle Scholar
  55. Sheng YP, Liu T (2011) Three-dimensional simulation of wave-induced circulation: comparison of three radiation stress formulations. J Geophys Res-Oceans 116:C05021. doi:10.1029/2010JC006765 CrossRefGoogle Scholar
  56. Smith JA (2006) Wave-current interactions in finite depth. J Phys Oceanogr 36(7):1403--1419. doi:10.1175/JPO2911.1
  57. Sun Y, Chen C, Beardsley RC, Xu Q, Qi J, Lin H (2013) Impact of current-wave interaction on storm surge simulation: a case study for hurricane Bob. J Geophys Res-Oceans 118(5):2685–2701. doi:10.1002/jgrc.20207 CrossRefGoogle Scholar
  58. Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans: their physics, chemistry, and general biology. Prentice-Hall, New YorkGoogle Scholar
  59. Tang CL, Perrie W, Jenkins AD, DeTracey BM, Hu Y, Toulany B, Smith PC (2007) Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J Geophys Res-Oceans 112:C10025. doi:10.1002/jgrc.20207 CrossRefGoogle Scholar
  60. Taylor PK, Yelland MJ (2001). The dependence of sea surface roughness on the height and steepness of the waves. J Phys Oceanogr 31(2): 572–590. dio: 10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2
  61. Tilburg CE, Gill SM, Zeeman SI, Carlson AE, Arienti TW, Eickhorst JA, Yund PO (2011) Characteristics of a shallow river plume: observations from the Saco River coastal observing system. Estuar Coast 34(4):785–799. doi:10.1007/s12237-011-9401-y CrossRefGoogle Scholar
  62. Uchiyama Y, McWilliams JC, Restrepo JM (2009) Wave-current interaction in nearshore shear instability analyzed with a vortex force formalism. J Geophys Res-Oceans 114:C06021. doi:10.1029/2008JC005135 CrossRefGoogle Scholar
  63. Uchiyama Y, McWilliams JC, Shchepetkin AF (2010) Wave–current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone. Ocean Model 34(1):16–35. doi:10.1016/j.ocemod.2010.04.002 CrossRefGoogle Scholar
  64. Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model 35(3):230–244. doi:10.1016/j.ocemod.2010.07.010 CrossRefGoogle Scholar
  65. Warner JC, Butman B, Dalyander PS (2008) Storm-driven sediment transport in Massachusetts Bay. Cont Shelf Res 28(2):257–282. doi:10.1016/j.csr.2007.08.008 CrossRefGoogle Scholar
  66. Westerink JJ, Luettich RA Jr, Blain CA, Scheffner NW (1994) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries. Report 2: users’ manual for ADCIRC-2DDI. Technical Report DRP-92-6, U.S. Army Corps of Engineers. http://www.unc.edu/ims/adcirc/publications/1994/1994_Westerink01.pdf
  67. Westerink JJ, Luettich RA Jr, Feyen JC, Atkinson JH, Dawson C, Roberts HJ, Powell MD, Dunion JP, Kubatko EJ, Pourtaheri H (2008) A basin-to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana. Mon Weather Rev 136(3):833–864. doi:10.1175/2007MWR1946.1 CrossRefGoogle Scholar
  68. Wolf J (2009) Coastal flooding: impacts of coupled wave–surge–tide models. Nat Hazards 49(2):241–260. doi:10.1007/s11069-008-9316-5 CrossRefGoogle Scholar
  69. Xia H, Xia Z, Zhu L (2004) Vertical variation in radiation stress and wave-induced current. Coast Eng 51(4):309–321. doi:10.1016/j.coastaleng.2004.03.003 CrossRefGoogle Scholar
  70. Xie L, Wu K, Pietrafesa L, Zhang C (2001) A numerical study of wave-current interaction through surface and bottom stresses: wind-driven circulation in the South Atlantic Bight under uniform winds. J Geophys Res-Oceans 106(C8):16841–16855. doi:10.1029/2000JC000292 CrossRefGoogle Scholar
  71. Xie D, Zou Q, Cannon JW (2016) Application of SWAN + ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm. WSE 9(1):33–41. doi:10.1016/j.wse.2016.02.003 Google Scholar
  72. Xue HJ, Chai F, Pettigrew NR (2000) A model study of the seasonal circulation in the Gulf of Maine. J Phys Oceanogr 30(5):1111–1135. doi:10.1175/1520-0485(2000)030<1111:AMSOTS>2.0.CO;2 CrossRefGoogle Scholar
  73. Yang Z, Myers E (2008) Barotropic tidal energetics and tidal datums in the Gulf of Maine and Georges Bank region. Estuar Coast Model (2007):74–94. doi:10.1061/40990(324)5
  74. Zijlema M (2010) Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coast Eng 57(3):267–277. doi:10.1016/j.coastaleng.2009.10.011 CrossRefGoogle Scholar
  75. Zijlema M, van Vledder GP, Holthuij Sen LH (2012) Bottom friction and wind drag for wave models. Coast Eng 65:19–26. doi:10.1016/j.coastaleng.2012.03.002 CrossRefGoogle Scholar
  76. Zou Q (2004) A simple model for random wave bottom friction and dissipation. J Phys Oceanogr 34(6):1459–1467. doi:10.1175/1520-0485(2004)034<1459:ASMFRW>2.0.CO;2 CrossRefGoogle Scholar
  77. Zou Q, Bowen AJ, Hay AE (2006) The vertical distribution of wave shear stress in variable water depth: theory and field observations. J Geophys Res-Oceans 111:C09032. doi:10.1029/2005JC003300 Google Scholar
  78. Zou Q, Chen Y, Cluckie I, Hewston R, Pan S, Peng Z, Reeve D (2013) Ensemble prediction of coastal flood risk arising from overtopping by linking meteorological, ocean, coastal and surf zone models. Q J Roy Meteor Soc 139(671):298–313. doi:10.1002/qj.2078 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of MaineOronoUSA

Personalised recommendations