Ocean Dynamics

, Volume 66, Issue 12, pp 1559–1588 | Cite as

Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region

  • Yannis Androulidakis
  • Vassiliki Kourafalou
  • George Halliwell
  • Matthieu Le Hénaff
  • Heesook Kang
  • Michael Mehari
  • Robert Atlas
Article

Abstract

The evolution of three successive hurricanes (Katia, Maria, and Ophelia) is investigated over the river plume area formed by the Amazon and Orinoco river outflows during September of 2011. The study focuses on hurricane impacts on the ocean structure and the ocean feedback influencing hurricane intensification. High-resolution (1/25° × 1/25° horizontal grid) numerical simulations of the circulation in the extended Atlantic Hurricane Region (Caribbean Sea, Gulf of Mexico, and Northwest Atlantic Ocean) were used to investigate the upper ocean response during the three hurricane-plume interaction cases. The three hurricanes revealed different evolution and intensification characteristics over an area covered by brackish surface waters. The upper ocean response to the hurricane passages over the plume affected region showed high variability due to the interaction of oceanic and atmospheric processes. The existence of a barrier layer (BL), formed by the offshore spreading of brackish waters, probably facilitated intensification of the first storm (Hurricane Katia) because the river-induced BL enhanced the resistance of the upper ocean to cooling. This effect was missing in the subsequent two hurricanes (Maria and Ophelia) as the eroded BL (due to Katia passage) allowed the upper ocean cooling to be increased. As a consequence, the amount of ocean thermal energy provided to these storms was greatly reduced, which acted to limit intensification. Numerical experiments and analyses, in tandem with observational support, lead to the conclusion that the presence of a river plume-induced BL is a strong factor in the ocean conditions influencing hurricane intensification.

Keywords

Hurricane intensification Barrier layer Atlantic hurricane region Amazon-Orinoco plume HYCOM 

References

  1. Androulidakis YS, Kourafalou VH (2013) On the processes that influence the transport and fate of Mississippi waters under flooding outflow conditions. Ocean Dyn 63(2–3):143–164CrossRefGoogle Scholar
  2. Androulidakis YS, Kourafalou VH, Krestenitis YN, Zervakis V (2012) Variability of deep water mass characteristics in the North Aegean Sea: the role of lateral inputs and atmospheric conditions. Deep-Sea Res I Oceanogr Res Pap 67:55–72CrossRefGoogle Scholar
  3. Balaguru K, Chang P, Saravanan R, Leung LR, Xu Z, Li M, Hsieh JS (2012a) Ocean barrier layers’ effect on tropical cyclone intensification. Proc Natl Acad Sci 109(36):14343–14347CrossRefGoogle Scholar
  4. Balaguru K, Chang P, Saravanan R, Jang CJ (2012b) The Barrier Layer of the Atlantic warm pool: formation mechanism and influence on the mean climate. Tellus A 64Google Scholar
  5. Balaguru K, Taraphdar S, Leung LR, Foltz GR, Knaff JA (2014) Cyclone-cyclone interactions through the ocean pathway. Geophys Res Lett 41(19):6855–6862CrossRefGoogle Scholar
  6. Banks CJ, Gommenginger CP, Srokosz M, Snaith HM (2012) Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data. Geoscience and Remote Sensing, IEEE Transactions on 50(5):1688–1702CrossRefGoogle Scholar
  7. Barron CN, Smedstad LF (2002) Global River Inflow within the Navy Coastal Ocean Model. Proceedings, MTS/IEEE Oceans 2002 Conference, 1472–1479Google Scholar
  8. Blake ES, Landsea C, Gibney EJ (2007) The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts) (p. 43). NOAA/National Weather Service, National Centers for Environmental Prediction, National Hurricane CenterGoogle Scholar
  9. Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 4(1):55–88CrossRefGoogle Scholar
  10. Bleck R, Halliwell G, Wallcraft A, Carrol S, Kelly K, Rushing K, (2002) Hybrid Coordinate Ocean Model (HYCOM). User’s Manual, 199 ppGoogle Scholar
  11. Brennan MJ (2012) Hurricane Maria Cyclone Report, National Hurricane Center, December 8, 2011. Available On Line: http://www.nhc.noaa.gov/data/tcr/AL142011_Maria.pdf
  12. Cangialosi JP (2011) Hurricane Ophelia Tropical Cyclone Report, National Hurricane Center, December 8, 2011. Available On Line: http://www.nhc.noaa.gov/data/tcr/AL162011_Ophelia.pdf
  13. Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Hogan PJ, Wallcraft AJ, Bleck R (2007) The HYCOM (hybrid coordinate ocean model) data assimilative system. J Mar Syst 65(1):60–83CrossRefGoogle Scholar
  14. Coles VJ, Brooks MT, Hopkins J, Stukel MR, Yager PL, Hood RR (2013) The pathways and properties of the Amazon River plume in the tropical North Atlantic Ocean. Journal of Geophysical Research: Oceans 118(12):6894–6913Google Scholar
  15. Cummings JA, Smedstad OM (2013) Variational data assimilation for the global ocean. In: Data assimilation for atmospheric, oceanic and hydrologic applications (Vol. II). Springer Berlin Heidelberg, p 303–343Google Scholar
  16. De Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans 109(C12). doi:10.1029/2004JC002378
  17. De Boyer Montégut C, Mignot J, Lazar A, Cravatte S, (2007) Control of salinity on the mixed layer depth in the world ocean: 1. General description. Journal of Geophysical Research: Oceans 112(C6). doi:10.1029/2006JC003953
  18. Domingues R, Goni G, Bringas F, Lee S-K, Kim H-S, Halliwell G, Dong J, Morell J, Pomales L (2015) Upper Ocean response to hurricane Gonzalo (2014): salinity effects revealed by targeted and sustained underwater glider observations. Geophys Res Lett 42:7131–7138. doi:10.1002/2015GL065378 CrossRefGoogle Scholar
  19. Donlon C, Casey K, Gentemann C, LeBorgne P, Robinson I, Reynolds R, Merchant C, Llewellyn-Jones D, Minnett P, JF P, Cornillon P (2009) Successes and challenges for the modern sea surface temperature observing system. Proceedings of the OceanObs 21:9Google Scholar
  20. Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326(6112):483–485CrossRefGoogle Scholar
  21. Felton CS, Subrahmanyam B, Murty VSN, Shriver JF (2014) Estimation of the barrier layer thickness in the Indian Ocean using Aquarius salinity. Journal of Geophysical Research: Oceans 119(7):4200–4213Google Scholar
  22. Ffield A (2005) North Brazil current rings viewed by TRMM microwave imager SST and the influence of the Amazon plume. Deep Sea Res I 52(1):137–160CrossRefGoogle Scholar
  23. Ffield A (2007) Amazon and Orinoco River plumes and NBC rings: bystanders or participants in hurricane events? J Clim 20(2):316–333CrossRefGoogle Scholar
  24. Fisher EL (1958) Hurricanes and the sea-surface temperature field. J Meteorol 15(3):328–333CrossRefGoogle Scholar
  25. Forget G, Ferron B, Mercier H (2008) Combining Argo profiles with a general circulation model in the North Atlantic. Part 1: estimation of hydrographic and circulation anomalies from synthetic profiles, over a year. Ocean Model 20(1):1–16CrossRefGoogle Scholar
  26. Fratantoni DM, Johns WE, Townsend TL (1995) Rings of the North Brazil current: their structure and behaviour inferred from observations and a numerical simulation. J Geophys Res 100:10633–10654CrossRefGoogle Scholar
  27. Gierach MM, Vazquez-Cuervo J, Lee T, Tsontos VM (2013) Aquarius and SMOS detect effects of an extreme Mississippi River flooding event in the Gulf of Mexico. Geophys Res Lett 40(19):5188–5193CrossRefGoogle Scholar
  28. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479CrossRefGoogle Scholar
  29. Goni G, Johns WE (2001) A census of North Brazil current rings observed from TOPEX/POSEIDON altimetry: 1992-1998. Geophys Res Lett 28(1):1–4CrossRefGoogle Scholar
  30. Goni G, Black P, Trinanes J (2003) Using satellite altimetry to identify regions of hurricane intensification. Aviso. Newsletter 9:19–20Google Scholar
  31. Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the tropical oceans 77:155–218Google Scholar
  32. Grodsky SA, Reul N, Lagerloef G, Reverdin G, Carton JA, Chapron B, Quilfen Y, Kudryavtsev VN, Kao HY (2012) Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophysical Research Letters 39(20). doi:10.1029/2012GL053335.
  33. Grodsky SA, Reverdin G, Carton JA, Coles VJ (2014) Year-to-year salinity changes in the Amazon plume: contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens Environ 140:14–22CrossRefGoogle Scholar
  34. Guinehut S, Larnicol G, Le Traon PY (2002) Design of an array of profiling floats in the North Atlantic from model simulations. J Mar Syst 35(1):1–9CrossRefGoogle Scholar
  35. Halliwell GR (2004) Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM. Ocean Model 7(3):285–322CrossRefGoogle Scholar
  36. Halliwell GR, Srinivasan A, Kourafalou V, Yang H, Willey D, Le Hénaff M, Atlas R (2014) Rigorous evaluation of a fraternal twin ocean OSSE system for the open Gulf of Mexico. J Atmos Ocean Technol 31(1):105–130CrossRefGoogle Scholar
  37. Halliwell GR, Gopalakrishnan S, Marks F, Willey D (2015a) Idealized study of ocean impacts on tropical cyclone intensity forecasts. Mon Weather Rev 143:1142–1165CrossRefGoogle Scholar
  38. Halliwell GR, Kourafalou V, Le Hénaff M, Shay LK, Atlas R (2015b) OSSE impact analysis of airborne ocean surveys for improving upper ocean dynamical and thermodynamical forecasts in the Gulf of Mexico. Prog Oceanogr 130:32–46CrossRefGoogle Scholar
  39. Johns WE, Lee TN, Schott FA, Zantopp RJ, Evans RH (1990) The North Brazil Current retroflection: seasonal structure and eddy variability. Journal of Geophysical Research: Oceans 95(C12):22103–22120CrossRefGoogle Scholar
  40. Jullien S, Menkes CE, Marchesiello P, Jourdain NC, Lengaigne M, Koch-Larrouy A, Lefevre J, Vincent EM, Faure V (2012) Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J Phys Oceanogr 42(11):1882–1906CrossRefGoogle Scholar
  41. Jullien S, Marchesiello P, Menkes CE, Lefèvre J, Jourdain NC, Samson G, Lengaigne M (2014) Ocean feedback to tropical cyclones: climatology and processes. Clim Dyn 43(9–10):2831–2854CrossRefGoogle Scholar
  42. Kendall MG (1975) Rank correlation methods, 4th edition. Charles Griffin, LondonGoogle Scholar
  43. Kim HS, Vecchi GA, Knutson TR, Anderson WG, Delworth TL, Rosati A, Zeng F, Zhao M (2014) Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2. 5 high-resolution coupled climate model. J Clim 27(21):8034–8054Google Scholar
  44. Kourafalou VH, Androulidakis YS (2013) Influence of Mississippi River induced circulation on the Deepwater horizon oil spill transport. Journal of Geophysical Research: Oceans 118(8):3823–3842Google Scholar
  45. Kourafalou VH, Oey L-Y, Wang JD, Lee TN (1996) The fate of river discharge on the continental shelf. Part I: modeling the river plume and the inner-shelf coastal current. J Geophys Res 101(C2):3415–3434. doi:10.1029/95JC03024 CrossRefGoogle Scholar
  46. Kourafalou VH, Androulidakis YS, Halliwell GR, Kang H, Mehari M, Le Hénaff M, Atlas R, Lumpkin R (2016) North Atlantic Ocean OSSE system development: nature run evaluation and application to hurricane interaction with the Gulf Stream. Prog Oceanogr 145:1–25Google Scholar
  47. Lagerloef G (2012) Satellite mission monitors ocean surface salinity. Eos, Transactions American Geophysical Union 93(25):233–234CrossRefGoogle Scholar
  48. Lagerloef G, Colomb FR, Le Vine D, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, deCharon A, Feldman G (2008) The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography 21(1):68–81CrossRefGoogle Scholar
  49. Landsea CW, Gray WM (1992) The strong association between western Sahelian monsoon rainfall and intense Atlantic hurricanes. J Clim 5(5):435–453CrossRefGoogle Scholar
  50. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–404CrossRefGoogle Scholar
  51. Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2(3):218–224CrossRefGoogle Scholar
  52. Lentz SJ (1995) Seasonal variations in the horizontal structure of the Amazon plume inferred from historical hydrographic data. Journal of Geophysical Research: Oceans (1978–2012) 100(C2):2391–2400CrossRefGoogle Scholar
  53. Lewis K, Allen JI (2009) Validation of a hydrodynamic-ecosystem model simulation with time-series data collected in the western English Channel. J Mar Syst 77(3):296–311CrossRefGoogle Scholar
  54. Liu Y, MacCready P, Hickey BM (2009) Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophys Res Lett 36(2). doi:10.1029/2008GL036447
  55. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357CrossRefGoogle Scholar
  56. Mainelli M, DeMaria M, Shay LK, Goni G (2008) Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather Forecast 23(1):3–16CrossRefGoogle Scholar
  57. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:163–171CrossRefGoogle Scholar
  58. Masson S, Delecluse P (2001) Influence of the Amazon River runoff on the tropical Atlantic. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26(2):137–142CrossRefGoogle Scholar
  59. Merrill RT (1984) A comparison of large and small tropical cyclones. Mon Weather Rev 112(7):1408–1418CrossRefGoogle Scholar
  60. Muller-Karger FE, McClain CR, Richardson PL (1988) The dispersal of the Amazon’s water. Nature 333(6168):56–59CrossRefGoogle Scholar
  61. Muller-Karger FE, Richardson PL, McGillicuddy D (1995) On the offshore dispersal of the Amazon’s plume in the North Atlantic: comments on the paper by A. Longhurst, “Seasonal cooling and blooming in tropical oceans. Deep-Sea Res I Oceanogr Res Pap 42(11):2127–2137CrossRefGoogle Scholar
  62. Neetu, S., Lengaigne, M., Vincent, E.M., Vialard, J., Madec, G., Samson, G., Ramesh Kumar MR, Durand F (2012) Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. Journal of Geophysical Research: Oceans 117(C12). doi:10.1029/2012JC008433.
  63. Newinger C, Toumi R (2015) Potential impact of the colored Amazon and Orinoco plume on tropical cyclone intensity. Journal of Geophysical Research: Oceans 120(2):1296–1317Google Scholar
  64. Pailler K, Bourlès B, Gouriou Y (1999) The barrier layer in the western tropical Atlantic Ocean. Geophys Res Lett 26(14):2069–2072CrossRefGoogle Scholar
  65. Pearson K (1903) Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability and correlation of organs. Philos Trans R Soc Lond 200:1–66CrossRefGoogle Scholar
  66. Peng MS, Reynolds CA (2006) Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J Atmos Sci 63(10):2508–2528CrossRefGoogle Scholar
  67. Price JF (1981) Upper Ocean response to a hurricane. J Phys Oceanogr 11(2):153–175CrossRefGoogle Scholar
  68. Price JF (2009) Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Sci 5:351–368CrossRefGoogle Scholar
  69. Reul N, Fournier S, Boutin J, Hernandez O, Maes C, Chapron B, Alory G, Quilfen Y, Tenerelli J, Morisset S, Kerr Y (2014a) Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle. Surv Geophys 35(3):681–722CrossRefGoogle Scholar
  70. Reul N, Quilfen Y, Chapron B, Fournier S, Kudryavtsev V, Sabia R (2014b) Multisensor observations of the Amazon-Orinoco river plume interactions with hurricanes. Journal of Geophysical Research: Oceans 119(12):8271–8295Google Scholar
  71. Samson G, Giordani H, Caniaux G, Roux F (2009) Numerical investigation of an oceanic resonant regime induced by hurricane winds. Ocean Dyn 59(4):565–586CrossRefGoogle Scholar
  72. Sanford TB, Price JF, Girton JB (2011) Upper-ocean response to hurricane Frances (2004) observed by profiling EM-APEX floats. J Phys Oceanogr 41(6):1041–1056CrossRefGoogle Scholar
  73. Schade LR, Emanuel KA (1999) The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model. J Atmos Sci 56(4):642–651CrossRefGoogle Scholar
  74. Schiller RV, Kourafalou VH (2010) Modeling river plume dynamics with the HYbrid Coordinate Ocean Model. Ocean Model 33(1):101–117CrossRefGoogle Scholar
  75. Schiller RV, Kourafalou VH, Hogan P, Walker ND (2011) The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing on the fate of plume waters. Journal of Geophysical Research: Oceans (1978–2012) 116(C6)Google Scholar
  76. Sengupta D, Goddalehundi BR, Anitha DS (2008) Cyclone-induced mixing does not cool SST in the post-monsoon North Bay of Bengal. Atmos Sci Lett 9(1):1–6CrossRefGoogle Scholar
  77. Shay LK, Black PG, Mariano AJ, Hawkins JD, Elsberry RL (1992) Upper Ocean response to Hurricane Gilbert. J Geophys Res 97(20):227–220Google Scholar
  78. Shay LK, Mariano AJ, Jacob SD, Ryan EH (1998) Mean and near-inertial ocean current response to Hurricane Gilbert. J Phys Oceanogr 28(5):858–889CrossRefGoogle Scholar
  79. Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128(5):1366–1383CrossRefGoogle Scholar
  80. Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface layer of the tropics. J Geophys Res 97(C5):7305–7316CrossRefGoogle Scholar
  81. Steel RG, James H (1960) Principles and procedures of statistics: with special reference to the biological sciences. McGraw-Hill, New York, 519.5, S314Google Scholar
  82. Stewart SR (2012) Hurricane Katia Tropical Cyclone Report. National Hurricane Center, December 8, 2011. Available On Line: http://www.nhc.noaa.gov/data/tcr/AL122011_Katia.pdf
  83. Vincent EM, Lengaigne M, Vialard J, Madec G, Jourdain NC, Masson S (2012) Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. Journal of Geophysical Research: Oceans (1978–2012) 117(C5). doi:10.1029/2011JC007705.
  84. Vizy EK, Cook KH (2010) Influence of the Amazon/Orinoco Plume on the summertime Atlantic climate. Journal of Geophysical Research: Atmospheres (1984 2012), 115(D21)Google Scholar
  85. Wang C, Liu H, Lee SK, Atlas R (2011) Impact of the Atlantic warm pool on United States landfalling hurricanes. Geophysical Research Letters 38(19). doi:10.1029/2011GL049265.
  86. Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194Google Scholar
  87. Wu L (2007) Impact of Saharan air layer on hurricane peak intensity. Geophysical Research Letters 34(9). doi:10.1029/2007GL029564.
  88. Zamudio L, Hogan PJ (2008) Nesting the Gulf of Mexico in Atlantic HYCOM: oceanographic processes generated by Hurricane Ivan. Ocean Model 21(3):106–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yannis Androulidakis
    • 1
  • Vassiliki Kourafalou
    • 1
  • George Halliwell
    • 2
  • Matthieu Le Hénaff
    • 2
    • 3
  • Heesook Kang
    • 1
  • Michael Mehari
    • 3
  • Robert Atlas
    • 2
  1. 1.Rosenstiel School of Marine and Atmospheric SciencesUniversity of MiamiMiamiUSA
  2. 2.NOAA-AOMLMiamiUSA
  3. 3.Cooperative Institute for Marine and Atmospheric StudiesUniversity of MiamiMiamiUSA

Personalised recommendations