Ocean Dynamics

, Volume 66, Issue 11, pp 1497–1516 | Cite as

The impact of disposal of fine-grained sediments from maintenance dredging works on SPM concentration and fluid mud in and outside the harbor of Zeebrugge

  • Michael Fettweis
  • Matthias Baeye
  • Claudio Cardoso
  • Arvid Dujardin
  • Brigitte Lauwaert
  • Dries Van den Eynde
  • Thomas Van Hoestenberghe
  • Joris Vanlede
  • Luc Van Poucke
  • Carlos Velez
  • Chantal Martens
Article
Part of the following topical collections:
  1. Topical Collection on the 13th International Conference on Cohesive Sediment Transport in Leuven, Belgium 7-11 September 2015

Abstract

The amount of sediments to be dredged and disposed depends to a large part on the suspended particulate matter (SPM) concentration. Tidal, meteorological, climatological, and seasonal forcings have an influence on the horizontal and vertical distribution of the SPM in the water column and on the bed and control the inflow of fine-grained sediments towards harbors and navigation channels. About 3 million tons (dry matter) per year of mainly fine-grained sediments is dredged in the port of Zeebrugge and is disposed on a nearby disposal site. The disposed sediments are quickly resuspended and transported away from the site. The hypothesis is that a significant part of the disposed sediments recirculates back to the dredging places and that a relocation of the disposal site to another location at equal distance to the dredging area would reduce this recirculation. In order to validate the hypothesis, a 1-year field study was set up in 2013–2014. During 1 month, the dredged material was disposed at a new site. Variations in SPM concentration were related to tides, storms, seasonal changes, and human impacts. In the high-turbidity Belgian near-shore area, the natural forcings are responsible for the major variability in the SPM concentration signal, while disposal has only a smaller influence. The conclusion from the measurements is that the SPM concentration decreases after relocation of the disposal site but indicate stronger (first half of field experiment) or weaker (second half of field experiment) effects that are, however, supported by the environmental conditions. The results of the field study may have consequences on the management of disposal operations as the effectiveness of the disposal site depends on environmental conditions, which are inherently associated with chaotic behavior.

Keywords

SPM concentration Dredging and disposal operations Long-term observational time series 

Notes

Acknowledgments

The study was supported by the Maritime Access Division of the Flemish Ministry of Mobility and Public Works (MOMO project and contracts 16EF/2011/35 and WL_12_10). Ship Time RV Belgica was provided by BELSPO and RBINS—Operational Directorate Natural Environment. The wave and wind data are from Agency for Maritime and Coastal Services-Coastal Division (Flemish Ministry of Mobility and Public Works). We thank L. Naudts, J. Backers, W. Vanhaverbeke, and K. Hindryckx for all technical aspects of instrumentation and moorings and F. Francken for data processing and archiving of the measurements.

References

  1. Adriaens R (2015) Neogene and quarternary clay minerals in the southern North Sea. PhD thesis, KULeuven, BelgiumGoogle Scholar
  2. Agrawal Y, Pottsmith HC (2000) Instruments for particle size and settling velocity observations in sediment transport. Mar Geol 168:89–114CrossRefGoogle Scholar
  3. Agunwamba JC, Onuoha KC, Okoye AC (2012) Potential effects on the marine environment of dredging of the Bonny channel in the Niger Delta. Environ Monit Assess 184:6613–6625. doi: 10.1007/s10661-011-2446-3 CrossRefGoogle Scholar
  4. Andrews S, Nover D, Schladow S (2010) Using laser diffraction data to obtain accurate particle size distributions: the role of particlecomposition. Limnol Oceanogr Meth 8:507–526. doi: 10.4319/lom.2010.8.507 CrossRefGoogle Scholar
  5. Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C (2011) Nutrient dynamics and phytoplankton development along an estuary coastal zone continuum: a model study. J Mar Syst 84:49–66. doi: 10.1016/j.jmarsys.2010.08.005 CrossRefGoogle Scholar
  6. Badewien TH, Zimmer E, Bartholomä A, Reuter R (2009) Towards continuous long-term measurements of suspended particulate matter (SPM) in turbid coastal waters. Ocean Dyn 59:227–238. doi: 10.1007/s10236-009-0183-8 CrossRefGoogle Scholar
  7. Baeye M, Fettweis M, Voulgaris G, Van Lancker V (2011) Sediment mobility in response to tidal and wind-driven flows along the Belgian inner shelf, southern North Sea. Ocean Dyn 61:611–622. doi: 10.1007/s10236-010-0370-7 CrossRefGoogle Scholar
  8. Baeye M, Fettweis M, Legrand S, Dupont Y, Van Lancker V (2012) Mine burial in the seabed of high-turbidity area—findings of a first experiment. Cont Shelf Res 43:107–119. doi: 10.1016/j.csr.2012.05.009 CrossRefGoogle Scholar
  9. Becker M, Schrottke K, Bartholomä A, Ernstsen V, Winter C, Hebbeln D (2013) Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone. J Geophys Res 118:2175–2187. doi: 10.1002/jgrc.20153 CrossRefGoogle Scholar
  10. Bolam SG (2012) Impacts of dredged material disposal on macrobenthic invertebrate communities: a comparison of structural and functional (secondary production) changes at disposal sites around England and Wales. Mar Poll Bull 64:2199–2210. doi: 10.1016/j.marpolbul.2012.07.050 CrossRefGoogle Scholar
  11. Bolam SG, Rees HL, Somerfield P, Smith R, Clarke KR, Warwick RM, Atkins M, Garnacho E (2006) Ecological consequences of dredged material disposal in the marine environment: a holistic assessment of activities around the England and Wales coastline. Mar Poll Bull 52:415–426. doi: 10.1016/j.marpolbul.2005.09.028 CrossRefGoogle Scholar
  12. Decrop B, De Mulder T, Toorman E, Sas M (2015) Large-eddy simulations of turbidity plumes in crossflow. Europ J Mech 53:68–84. doi: 10.1016/j.euromechflu.2015.03.013
  13. Du Four I, Van Lancker V (2008) Changes of sedimentological patterns and morphological features due to the disposal of dredge spoil and the regeneration after cessation of the disposal activities. Mar Geol 25:15–29. doi: 10.1016/j.margeo.2008.04.011 CrossRefGoogle Scholar
  14. Fettweis M, Baeye M (2015) Seasonal variation in concentration, size and settling velocity of muddy marine flocs in the benthic boundary layer. J Geophys Res 120:5648–5667. doi: 10.1002/2014JC010644 CrossRefGoogle Scholar
  15. Fettweis MP, Nechad B (2011) Evaluation of in situ and remote sensing sampling methods for SPM concentrations, Belgian continental shelf (southern North Sea). Ocean Dynamics 61 (2-3):157–171. doi: 10.1007/s10236-010-0310-6
  16. Fettweis M, Baeye M, Francken F, Lauwaert B, Van den Eynde D, Van Lancker V, Martens C, Michielsen T (2011) Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea. Mar Poll Bull 62:258–268. doi: 10.1016/j.marpolbul.2010.11.002 CrossRefGoogle Scholar
  17. Fettweis M, Baeye M, Lee BJ, Chen P, JCR Y (2012a) Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea. Geo-Mar Lett 32:123–137. doi: 10.1007/s00367-011-0266-7 CrossRefGoogle Scholar
  18. Fettweis M, Monbaliu J, Nechad B, Baeye M, Van den Eynde D (2012b) Weather and climate related spatial variability of high turbidity areas in the North Sea and the English Channel. Meth Oceanogr 3-4:25–29. doi: 10.1016/j.mio.2012.11.001 CrossRefGoogle Scholar
  19. Garel E, Ferreira O (2011) Monitoring estuaries using non-permanent stations: practical aspects and data examples. Ocean Dyn 61:891–902. doi: 10.1007/s10236-011-0417-4 CrossRefGoogle Scholar
  20. Ha HK, Maa J-PY, Park K, Kim YH (2011) Estimation of high-resolution sediment concentration profiles in bottom boundary layer using pulse-coherent acoustic doppler current profilers. Mar Geol 279:199–209. doi: 10.1016/j.margeo.2010.11.002 CrossRefGoogle Scholar
  21. Henson SA (2014) Slow science: the value of long ocean biogeochemistry records. Phil Trans R Soc A 372:20130334. doi: 10.1098/rsta.2013.0334 CrossRefGoogle Scholar
  22. Jalón-Rojas I, Schmidt S, Sottolichio A (2015) Turbidity in the fluvial Gironde estuary (Southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions. Hydrol Earth Syst Sci 19:2805–2819. doi: 10.5194/hess-19-2805-2015 CrossRefGoogle Scholar
  23. Kapsimalis V, Panagiotopoulos IP, Hatzianestis I, Kanellopoulos TD, Tsangaris C, Kaberi E, Kontoyiannis H, Rousakis G, Kyriakidou C, Hatiris GA (2013) A screening procedure for selecting the most suitable dredged material placement site at the sea. The case of the South Euboean Gulf, Greece. Environ Monit Assess 185:10049–10072. doi: 10.1007/s10661-013-3312-2 CrossRefGoogle Scholar
  24. Kirby R (2011) Minimising harbour siltation—findings of PIANC working group 43. Ocean Dyn 61:233–244. doi: 10.1007/s10236-010-0336-9 CrossRefGoogle Scholar
  25. Lauwaert B, Bekaert K, Berteloot M, De Backer A, Derweduwen J, Dujardin A, Fettweis M, Hillewaert H, Hoffman S, Hostens K, Ides S, Janssens J, Martens C, Michielsen T, Parmentier K, Van Hoey G, Verwaest T (2009) Synthesis report on the effects of dredged material disposal on the marine environment (licensing period 2008–2009). http://www.mumm.ac.be/Downloads/News/synthesis_report_PW_2009.pdf. Accessed 25 May 2016
  26. Le Hir P, Bassoullet P, Jestin H (2000) Application of the continuous modeling concept to simulate high-concentration suspended sediment in a macrotidal estuary. Proc. Mar Sci 3:229–247CrossRefGoogle Scholar
  27. Li Y, Mehta AJ (2000) Fluid mud in the wave-dominated environment revisited. Proc. Mar Sci 3:79–93CrossRefGoogle Scholar
  28. Mehta AJ (1991) Understanding fluid mud in a dynamic environment. Geo-Mar Lett 11:113–118CrossRefGoogle Scholar
  29. Mikkelsen O, Hill P, Milligan T (2006) Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera. J Sea Res 55:87–102. doi: 10.1016/j.seares.2005.09.003 CrossRefGoogle Scholar
  30. Motulsky H (2014). Intuitive biostatistics. 3rd edition, Oxford University PressGoogle Scholar
  31. Okada T, Larcombe P, Mason C (2009) Estimating the spatial distribution of dredged material disposed of at sea using particle-size distributions and metal concentrations. Mar Poll Bull 58:1164–1177. doi: 10.1016/j.marpolbul.2009.03.023 CrossRefGoogle Scholar
  32. Orpin AR, Ridd PV, Thomas S, Anthony KRN, Marshall P, Oliver J (2004) Natural turbidity variability and weather forecasts in risk management of anthropogenic sediment discharge near sensitive environments. Mar Poll Bull 49:602–612. doi: 10.1016/j.marpolbul.2004.03.020 CrossRefGoogle Scholar
  33. Rai AK, Kumar A (2015) Continuous measurement of suspended sediment concentration: technological advancement and future outlook. Measurem 76:209–227. doi: 10.1016/j.measurement.2015.08.013 Google Scholar
  34. Simonini R, Ansaloni I, Cavallini F, Graziosi F, Iotti M, Massamba N’Siala G, Mauri M, Montanari G, Preti M, Prevedelli D (2005) Effects of long-term dumping of harbor-dredged material on macrozoobenthos at four disposal sites along the Emilia-Romagna coast (northern Adriatic Sea, Italy). Mar Poll Bull 50:1595–1605. doi: 10.1016/j.marpolbul.2005.06.031 CrossRefGoogle Scholar
  35. Smith JE, Friedrichs C (2011) Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Cont Shelf Res 31:50–63. doi: 10.1016/j.csr.2010.04.002 CrossRefGoogle Scholar
  36. Smith SDA, Rule MD (2001) The effects of dredge-spoil dumping on a shallow water soft-sediment community in the Solitary Islands Marine Park, NSW Australia. Mar Poll Bull 42:1040–1048CrossRefGoogle Scholar
  37. Stockmann K, Riethmüller R, Heineke M, Gayer G (2009) On the morphological long-term development of dumped material in a low-energetic environment close to the German Baltic coast. J Mar Syst 75:409–420. doi: 10.1016/j.jmarsys.2007.04.010 CrossRefGoogle Scholar
  38. Stronkhorst J, Ariese F, van Hattum B, Postma JF, de Kluijver M, Den Besten PJ, Bergman MJN, Daan R, Murk AJ, Vethaak AD (2003) Environmental impact and recovery at two dumping sites for dredged material in the North Sea. Environ Poll 124:17–31. doi: 10.1016/S0269-7491(02)00430-X CrossRefGoogle Scholar
  39. Thorne PD, Hanes DM (2002) A review of acoustic measurement of small-scale sediment processes. Cont Shelf Res 22:603–632CrossRefGoogle Scholar
  40. Thorne PD, Hurther D (2014) An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies. Cont Shelf Res 73:97–118. doi: 10.1016/j.csr.2013.10.017 CrossRefGoogle Scholar
  41. Toorman EA (2002) Modelling of turbulent flow with cohesive sediment. Proc. Mar Sci 5:155–169CrossRefGoogle Scholar
  42. Van den Eynde D, Fettweis M (2006) Modelling of fine-grained sediment transport and dredged material on the Belgian continental shelf. J Coast Res SI39:1564–1569Google Scholar
  43. Van den Eynde D, Fettweis M (2014) Towards the application of an operational sediment transport model fort the optimisation of dredging works in the Belgian coastal zone (southern North Sea). In: Dahlin H, Flemming NC, Petersson SE (eds) Proc 6th Int Conf EuroGOOS, pp 250–257Google Scholar
  44. van Kessel T, Kranenburg C (1998) Wave-induced liquefaction and flow of subaqueous mud layers. Coast Eng 34:109–127CrossRefGoogle Scholar
  45. van Ledden M, Wang Z-B, Winterwerp H, de Vriend H (2004) Sand–mud morphodynamics in a short tidal basin. Ocean Dyn 54:385–391. doi: 10.1007/s10236-003-0050-y Google Scholar
  46. van Maren DS, Winterwerp JC, Sas M, Vanlede J (2009) The effect of dock length on harbour siltation. Cont Shelf Res 29:1410–1425. doi: 10.1016/j.csr.2009.03.003 CrossRefGoogle Scholar
  47. Van Maren DS, van Kessel T, Cronin K, Sittoni L (2015) The impact of channel deepening and dredging on estuarine sediment concentration. Cont Shelf Res 95:1–14. doi: 10.1016/j.csr.2014.12.010 CrossRefGoogle Scholar
  48. Vanlede J, Dujardin A (2014) A geometric method to study water and sediment exchange in tidal harbors. Ocean Dyn 64:1631–1641. doi: 10.1007/s10236-014-0767-9 CrossRefGoogle Scholar
  49. Verlaan PAJ, Spanhoff R (2000) Massive sedimentation events at the mouth of the Rotterdam waterway. J Coast Res 16:458–469Google Scholar
  50. Wan Y, Roelvink D, Li W, Qi D, Gu F (2014) Observation and modeling of the storm-induced fluid mud dynamics in a muddy-estuarine navigational channel. Geomorph 217:23–36. doi: 10.1016/j.geomorph.2014.03.050 CrossRefGoogle Scholar
  51. Winterwerp JC (2005) Reducing harbour siltation I: methodology. J Waterw Port Coast Ocean Eng 131:258–266. doi: 10.1061/(ASCE)0733-950X(2005)131:6(258) CrossRefGoogle Scholar
  52. Winterwerp JC (2006) Stratification effects by fine suspended sediment at low, medium and very high concentrations. J Geophys Res 111:C05012. doi: 10.1029/2005JC003019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael Fettweis
    • 1
  • Matthias Baeye
    • 1
  • Claudio Cardoso
    • 2
  • Arvid Dujardin
    • 2
    • 3
  • Brigitte Lauwaert
    • 1
  • Dries Van den Eynde
    • 1
  • Thomas Van Hoestenberghe
    • 2
    • 4
  • Joris Vanlede
    • 3
    • 5
  • Luc Van Poucke
    • 2
  • Carlos Velez
    • 2
  • Chantal Martens
    • 6
  1. 1.Royal Belgian Institute of Natural SciencesOperational Directorate Natural EnvironmentBrusselsBelgium
  2. 2.Antea GroupGhentBelgium
  3. 3.Department of Mobility and Public WorksFlanders Hydraulics ResearchAntwerpBelgium
  4. 4.FluvesGhentBelgium
  5. 5.Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands
  6. 6.Department of Mobility and Public WorksMaritime Access DivisionAntwerpBelgium

Personalised recommendations