Ocean Dynamics

, Volume 66, Issue 10, pp 1285–1299 | Cite as

Parameterization of wind turbine impacts on hydrodynamics and sediment transport

  • Aurélie Rivier
  • Anne-Claire Bennis
  • Grégory Pinon
  • Vanesa Magar
  • Markus Gross


Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.


Marine renewable energy Offshore wind farms Numerical modelling Hydrodynamics Sediment transport Foundation 



This paper is a contribution to the European cross-border program Interreg IVA France (Channel)—England OFELIA (Offshore Foundations EnvironmentaL Impact Assessments), co-funded by the ERDF, which involves the universities of Caen, Le Havre and Plymouth. A. Rivier and G. Pinon are supported by the University of Le Havre, A.C. Bennis by the University of Caen and V. Magar and M. Gross by CICESE. A. Rivier acknowledges the support of a post-doctoral grant from the University of Le Havre. The authors are grateful to Frank Dumas (SHOM) and Romain Le Gendre (IFREMER) for providing help for the model configuration of Courseulles-sur-Mer site.


  1. Abcha N, Bennis A, Brossard J, Ezersky A, Garcia-Hermosa I, Gross M, Gunnoo H, Iglesias G, Lebunetel J, Magr V, Miles J, Mouaze D, Perret G, Pinon G, Rivier A, Rogan C, Simmonds D (2015) Report of OFELIA project (European cross-border program Interreg IVA France (Channel) - England) on experimental and numerical modellingGoogle Scholar
  2. Achenbach E (1968) Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106. J Fluid Mech 34(04):625–639CrossRefGoogle Scholar
  3. Ahmadian R, Falconer RA (2012) Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output. Renew Energy 44:318–327CrossRefGoogle Scholar
  4. Baeye M, Fettweis M (2015) In situ observations of suspended particulate matter plumes at an offshore wind farm, southern north sea. Geo-Mar Lett :1–9Google Scholar
  5. Baptist M, Babovic V, Rodríguez Uthurburu J, Keijzer M, Uittenbogaard R, Mynett A, Verwey A (2007) On inducing equations for vegetation resistance. J Hydraul Res 45(4):435–450CrossRefGoogle Scholar
  6. Bennis AC, Ardhuin F, Dumas F (2011) On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests. Ocean Model 40(3):260–272CrossRefGoogle Scholar
  7. Bennis AC, Dumas F, Ardhuin F, Blanke B (2014) Mixing parameterization: impacts on rip currents and wave set-up. Ocean Eng 84:213–227CrossRefGoogle Scholar
  8. Bouma T, Van Duren L, Temmerman S, Claverie T, Blanco-Garcia A, Ysebaert T, Herman P (2007) Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont Shelf Res 27(8):1020–1045CrossRefGoogle Scholar
  9. Camenen B, Larroudé P (2003) Comparison of sediment transport formulae for the coastal environment. Coast Eng 48(2):111– 132CrossRefGoogle Scholar
  10. Christie E, Li M, Moulinec C (2012) Comparison of 2d and 3d large scale morphological modeling of offshore wind farms using hpc. Coast Eng Proc 1(33):sediment–42Google Scholar
  11. Cooper B, Rees J, Coates T (2008) Review of Round 1 sediment process monitoring data—lessons learnt, Final Report, Department of Energy and Climate ChangeGoogle Scholar
  12. Dargahi B (1989) The turbulent flow field around a circular cylinder. Exp Fluids 8(1-2):1–12CrossRefGoogle Scholar
  13. Defne Z, Haas KA, Fritz HM (2011) Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the georgia coast, usa. Renew Energy 36(12):3461–3471CrossRefGoogle Scholar
  14. Dixen M, Lohmann IP, Christensen ED (2012) Method to predict long time span of scour around offshore wind turbine foundations. Coast Eng Proc 1(33):sediment–88Google Scholar
  15. Edelvang K, Lützen Møller A, Steenberg CM, Zom R, Hansen EA, KM (1999) Horns Rev Wind Power Plant. Environmental impact assessment of hydrography. Report prepared for ELSAMPROJEKT, DHIGoogle Scholar
  16. Fallon D, Hartnett M, Olbert A, Nash S (2014) The effects of array configuration on the hydro-environmental impacts of tidal turbines. Renew Energy 64:10–25CrossRefGoogle Scholar
  17. Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind energy 9(1-2):39–53CrossRefGoogle Scholar
  18. Ganthy F (2011) Rôle des herbiers de zostères (zostera noltii) sur la dynamique sédimentaire du bassin d’arcachon, in french:1Google Scholar
  19. García-Hermosa I, Brossard J, Cohen Z, Perret G, Pinon G, Abcha N, Bennis A, Ezersky A, Mouazé D, Rivier A et al (2014) Experimental characterisation of wave induced flow fields due to an offshore wind farm mast. In: First International Conference on Renewable Energies Offshore (RENEW) Lisbon, PortugalGoogle Scholar
  20. Graf W, Yulistiyanto B (1998) Experiments on flow around a cylinder; the velocity and vorticity fields. J Hydraul Res 36(4):637–654CrossRefGoogle Scholar
  21. Gunnoo H, Abcha N, Mouazé D, Ezersky A (2014) Laboratory simulation of resonance amplification of the hydrodynamic fields in the vicinity of wind farm masts. In: Proceedings of the 1st International Conference on Renewable Energies Offshore, LisbonGoogle Scholar
  22. Høgedal M, Hald T (2005) Scour assessment and design for scour for monopile foundations for offshore wind turbines. Copenhagen Offshore WindGoogle Scholar
  23. Jensen MS, Juul Larsen B, Frigaard P, DeVos L, Christensen ED, Asp Hansen E, Solberg T, Hjertager BH, Bove S (2006) Offshore wind turbines situated in areas with strong currents. Tech. rep., Offshore Center DanmarkGoogle Scholar
  24. Kervella Y (2010) Impact des installations ostréicoles sur l?hydrodynamique et la dynamique sédimentaire, in french. PhD thesis, Université de Caen Basse-NormandieGoogle Scholar
  25. Kirkil G, Constantinescu S, Ettema R (2008) Coherent structures in the flow field around a circular cylinder with scour hole. J Hydraul Eng 134(5):572–587CrossRefGoogle Scholar
  26. Lambkin D, Harris J, Cooper W, Coates T (2009) Coastal process modelling for offshore wind farm environmental impact assessment: best practice guide. COWRIE Limited, LondonGoogle Scholar
  27. Lazure P, Dumas F (2008) External–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31(2):233–250CrossRefGoogle Scholar
  28. Le Hir P, Cann P, Waeles B, Jestin H, Bassoullet P (2008) Erodibility of natural sediments: experiments on sand/mud mixtures from laboratory and field erosion tests. Proc Marine Sci 9:137–153CrossRefGoogle Scholar
  29. Le Hir P, Cayocca F, Waeles B (2011) Dynamics of sand and mud mixtures: a multiprocess-based modelling strategy. Cont Shelf Res 31(10):S135—S149Google Scholar
  30. Leballeur L, Latteux B, Girard F (2013) Synthèse de l’étude 2009 - Analyse des impacts hydrosédimentaires du projet de parc éolien en mer en Baie de Seine, Rapport MOC N0732 prepared for Eoliennes offshore du Calvados (in french), ActimarGoogle Scholar
  31. Leendertse J (1970) A Water-quality Simulation Model for Well-mixed Estuaries and Coastal Seas: Priciples of Computation. Rand Corporation, available from the National Technical Information Service. VA, SpringfieldGoogle Scholar
  32. de Leon SP, Bettencourt JH, Kjerstad N (2011) Simulation of irregular waves in an offshore wind farm with a spectral wave model. Cont Shelf Res 31(15):1541–1557CrossRefGoogle Scholar
  33. Li X, Chi L, Chen X, Ren Y, Lehner S (2014) Sar observation and numerical modeling of tidal current wakes at the east china sea offshore wind farm. J Geophys Res Oceans 119(8):4958–4971CrossRefGoogle Scholar
  34. Lindsey W (1938) Drag of cylinders of simple shapes. NACAGoogle Scholar
  35. Linton C, Evans D (1990) The interaction of waves with arrays of vertical circular cylinders. J Fluid Mech 215:549–569CrossRefGoogle Scholar
  36. Ludewig E (2015) On the Effect of Offshore Wind Farms on the Atmosphere and Ocean Dynamics. SpringerGoogle Scholar
  37. Nash S, Olbert A, Hartnett M et al (2014) Modelling the far field hydro-environmental impacts of tidal farms—a focus on tidal regime, inter-tidal zones and flushing. Comput Geosci 71:20–27CrossRefGoogle Scholar
  38. Navitus Bay Development Limited Ltd (2014) Environmental statement, Volume B-Offshore, Chapter 5-Physical Processes, Document Scholar
  39. Neill SP, Litt EJ, Couch SJ, Davies AG (2009) The impact of tidal stream turbines on large-scale sediment dynamics. Renew Energy 34(12):2803–2812CrossRefGoogle Scholar
  40. Okubo A (1971) Oceanic diffusion diagrams. In: Deep sea research and oceanographic abstracts, Elsevier, vol 18, pp 789–802Google Scholar
  41. Peaceman DW, Rachford Jr HH (1955) The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math 3(1):28–41CrossRefGoogle Scholar
  42. Plew DR, Stevens CL (2013) Numerical modelling of the effect of turbines on currents in a tidal channel–tory channel, new zealand. Renew Energy 57:269–282CrossRefGoogle Scholar
  43. Ramos V, Carballo R, Álvarez M, Sánchez M, Iglesias G (2013) Assessment of the impacts of tidal stream energy through high-resolution numerical modeling. Energy 61:541–554CrossRefGoogle Scholar
  44. Rees J, Larcombe P, Vivian C, Judd A (2006) Scroby Sands Offshore Wind Farm - Coastal Processes Monitoring Final Report AEO262 prepared for Marine Environmental Division, Defra and Department of Trade and Industry, CEFASGoogle Scholar
  45. Rennau H, Schimmels S, Burchard H (2012) On the effect of structure-induced resistance and mixing on inflows into the Baltic Sea: a numerical model study. Coast Eng 60:53–68CrossRefGoogle Scholar
  46. Rivier A, Bennis A, Pinon G, Gross M, Magar V (2014) Regional numerical modelling of offshore monopile wind turbine impacts on hydrodynamics and sediment transport. In: Proceedings of the 1st International Conference on Renewable Energies Offshore, LisbonGoogle Scholar
  47. Robins PE, Neill SP, Lewis MJ (2014) Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes. Renew Energy 72:311–321CrossRefGoogle Scholar
  48. Roc T, Conley DC, Greaves D (2013) Methodology for tidal turbine representation in ocean circulation model. Renew Energy 51:448–464CrossRefGoogle Scholar
  49. Rogan C, Miles J, Simmonds D, Iglesias G (2014) The hydrodynamics of monopile foundations - experimental measurements of near bed and free stream turbulenceGoogle Scholar
  50. Rogan C, Miles J, Simmonds D, Iglesias G (2016) The turbulent wake of a monopile foundation. Renew Energy 93:180–187CrossRefGoogle Scholar
  51. Roulund A, Sumer B M, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pile. J Fluid Mech 534:351–401CrossRefGoogle Scholar
  52. Sánchez M, Carballo R, Ramos V, Iglesias G (2014) Tidal stream energy impact on the transient and residual flow in an estuary: a 3d analysis. Appl Energy 116:167–177CrossRefGoogle Scholar
  53. Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Thomas TelfordGoogle Scholar
  54. Soulsby R, Whitehouse R (1997) Threshold of sediment motion in coastal environments. In: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume 1, Centre for Advanced Engineering, University of Canterbury, p 145Google Scholar
  55. Sumer BM, Fredsøe J (1997) Hydrodynamics around cylindrical structures. 12, World ScientificGoogle Scholar
  56. Temmerman S, Bouma T, Govers G, Wang Z, De Vries M, Herman P (2005) Impact of vegetation on flow routing and sedimentation patterns: three-dimensional modeling for a tidal marsh. J Geophys Res Earth Surf 110(F4)Google Scholar
  57. Thiébot J, du Bois PB, Guillou S (2015) Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—application to the alderney race (raz blanchard), france. Renew Energy 75:356–365CrossRefGoogle Scholar
  58. Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265CrossRefGoogle Scholar
  59. Vanhellemont Q, Ruddick K (2014) Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens Environ 145:105–115CrossRefGoogle Scholar
  60. Venayagamoorthy SK, Ku H, Fringer OB, Chiu A, Naylor RL, Koseff JR (2011) Numerical modeling of aquaculture dissolved waste transport in a coastal embayment. Environ Fluid Mech 11(4):329–352CrossRefGoogle Scholar
  61. Warner JC, Sherwood CR, Arango HG, Signell RP (2005) Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model 8(1):81–113CrossRefGoogle Scholar
  62. Whitehouse RJ, Harris JM, Sutherland J, Rees J (2011) The nature of scour development and scour protection at offshore windfarm foundations. Mar Pollut Bull 62(1):73–88CrossRefGoogle Scholar
  63. Yang Z, Wang T, Copping AE (2013) Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renew Energy 50:605–613CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aurélie Rivier
    • 1
    • 2
  • Anne-Claire Bennis
    • 1
  • Grégory Pinon
    • 2
  • Vanesa Magar
    • 3
  • Markus Gross
    • 3
  1. 1.Normandie Université, UNICAEN, UNIROUEN, CNRS, M2CCaenFrance
  2. 2.Normandie Université, UNIHAVRE, CNRS, LOMCLe HavreFrance
  3. 3.Departamento de Oceanografía FísicaCICESEEnsenadaMexico

Personalised recommendations