Ocean Dynamics

, Volume 66, Issue 6–7, pp 853–865 | Cite as

Longshore transport gradients and erosion processes along the Ilha Comprida (Brazil) beach system

  • Filipe Galiforni Silva
  • Paulo Henrique Gomes de Oliveira Sousa
  • Eduardo Siegle
Part of the following topical collections:
  1. Topical Collection on Physics of Estuaries and Coastal Seas 2014 in Porto de Galinhas, PE, Brazil, 19-23 October 2014


The aim of this study is to assess the longshore transport gradients and wave power distribution along the Ilha Comprida beach system and relate it to the distribution of the current erosion process along this barrier island. The study is based on quantitative analysis of the potential longshore drift and the wave power distribution, as well as on the morpho-sedimentary seasonal variations in the beach system. Therefore, the 30-year wave reanalysis database from the global wave generation model WAVEWATCH III (NOAA/NCEP) has been extracted and analyzed for the region, as well as field surveys with topographic measurements and sediment samples. The numerical model MIKE 21 SW has been applied to propagate waves onshore and recognize the longshore transport tendencies and the nearshore wave power distribution. Results show an overall transport trend to the NE, being larger in the southern sector than in the northern sector of the island. Varying transport magnitudes prove to generate gradients in longshore drift. Two positive gradients in the longshore drift, resulting in local sediment losses, are observed. One is found in the central-southern area and another in the northern part of the island. Both areas coincide with erosive spots, as observed through field surveys. The central-southern positive gradient becomes larger and migrates to the south during the most energetic months, while the northern gradient presents only variations in magnitude, being relatively stable in position throughout the year. Nearshore wave power results show two main areas with higher values that coincide with the positive longshore transport gradients. Sediment data presents low temporal variability, although spatial variations have been found reflecting the local hydrodynamic conditions, while the volumetric data shows largest values in the central-northern sector, being smaller in the central-southern and northern regions. Moreover, the central portions are more stable than the extreme portions regarding its seasonal variability. Our findings show that along this wide open stretch of coastline, exposed to the same offshore wave regime, an alternated nearshore wave regime results in areas with hydrodynamic conditions which lead to erosion or accretion. Erosion is caused by negative sediment balance as a function of higher wave power and positive gradients in longshore transport, and accretion due to lower wave power and negative gradients in longshore transport. Our findings help in further understanding the island’s long-term evolution and current state of its beaches.


Longshore transport Barrier island Coastal erosion 



This study was funded by FAPESP (Vulnerabilidade da zona costeira dos estados de São Paulo e Pernambuco: situação atual e projeções para cenários de mudanças climáticas—no. 09/52564-0) and CNPq (Dinâmica sedimentar de praias em resposta a eventos de alta energia—no. 478281/2008-0) projects. The MIKE21 numerical model is available through a collaboration with DHI. We are also grateful for the support from CNPq and CAPES for the author’s fellowships.


  1. Araújo CES, Franco D, Melo E, Pimenta F (2003) Wave regime characteristics of the southern Brazilian coast. International Conference on Coastal and Port Engineering in Developing Countries, COPEDEC VI, Colombo, Sri Lanka, Proceedings. Paper 97. CD-ROMGoogle Scholar
  2. Bird ECF (2008) Coastal geomorphology: an introduction. Wiley and Sons, Chichester, p 411Google Scholar
  3. Bittencourt ACSP, Martin L, Dominguez JML, Silva IR, Sousa DL (2002) A significant longshore transport divergence zone at the northeastern Brazilian coast: implications on coastal quaternary evolution. An Acad Bras Cienc 74:505–518CrossRefGoogle Scholar
  4. Bittencourt ACSP, Dominguez JML, Martin L, Silva IR (2005) Longshore transport on the northeastern Brazilian coast and implications to the location of large scale accumulative and erosive zones: an overview. Mar Geol 219:219–234CrossRefGoogle Scholar
  5. Bush DM, Neal WJ, Young RS, Pilkey OH (1999) Utilization of geoindicators for rapid assessment of coastal-hazard risk and mitigation. Ocean Coast Manag 42:647–670CrossRefGoogle Scholar
  6. Cai F, Su X, Liu J, Li B, Lei G (2009) Coastal erosion in China under the condition of global climate change and measures for its prevention. Prog Nat Sci 19(4):415–426. doi: 10.1016/j.pnsc.2008.05.034 CrossRefGoogle Scholar
  7. Caires S, Sterl A, Bidlot JR, Graham N, Swail V (2004) Intercomparison of different wind-wave reanalyses. J Clim 17:1893–1913CrossRefGoogle Scholar
  8. Cassiano GF, Siegle E (2010) Migração lateral da desembocadura do Rio Itapocú, SC, Brasil: evolução morfológica e condicionantes físicas. Rev Bras Geofísica 28(4):537–549CrossRefGoogle Scholar
  9. Cipriani LE, Stone GW (2001) Net longshore sediment transport and textural changes in beach sediments along the southwest Alabama and Mississipi barrier islands, USA. J Coast Res 17:443–458Google Scholar
  10. Conti LA, Araújo CAS, Paolo FS, Barcellos RL, Rodrigues M, Mahiques MM, Furtado VV (2012) An integrated GIS for sedimentological and geomorphological analysis of a lagoon environment. Barra de Cananéia inlet region, (Southeastern Brazil). J Coast Conserv 16(1):13–24CrossRefGoogle Scholar
  11. Davies JL (1980) Geographical variation in coastal development, 2nd edn. Longman, London, p 212Google Scholar
  12. Davis Jr RA, Fitzgerald DM (2004) Beaches and coasts. Blackwell Publishing. Cap 6. p. 102-114Google Scholar
  13. Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  14. Georgiou IY, Schindler JK (2009) Wave forecasting and longshore sediment transport gradients along a transgressive barrier island: Chandeleur Islands, Lousiana. Geo-Mar Lett 29:467–476. doi: 10.1007/s00367-009-0165-3 CrossRefGoogle Scholar
  15. Guedes CCF, Giannini PCF, Sawakuchi AO, Dewitt R, Nascimento Jr DR, Aguiar VAP, Rossi MG (2011) Determination of controls on Holocene barrier progradation through application of OSL dating: the Ilha Comprida Barrier example, Southeastern Brazil. Mar Geol 285(1):1–16CrossRefGoogle Scholar
  16. Harari J, Camargo R (1994) Simulação da propagação das nove principais componentes de maré na plataforma sudeste Brasileira através de modelo numérico hidrodinâmico. Boletim do Instituto Oceanográfico 42(1-2):35–54Google Scholar
  17. Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press, Cambridge, p 387CrossRefGoogle Scholar
  18. Holthuijsen LH, Booji N, Herbers THC (1989) A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coast Eng 13:23–54CrossRefGoogle Scholar
  19. Italiani DM, Mahiques MM (2014) O registro geológico da atividade antropogênica na região do Valo Grande, Estado de São Paulo, Brasil. Quaternary Environ Geosci 05(2):33–44CrossRefGoogle Scholar
  20. Kawakubo FS (2009) Avaliação das Mudanças na Linha de Costa na Foz do Rio Ribeira de Iguape/Desembocadura Lagunar da Barra do Icapara (Litoral Sul de São Paulo - Brasil) Utilizando dados do Landsat MSS, TM e ETM+. Investigaciones Geográficas, Boletín del Instituto de Geografia, UNAM. 68: 41 – 49 ppGoogle Scholar
  21. Komar PD (1998) Beach processes and sedimentation. 2nd edn. Prentice HallGoogle Scholar
  22. Marquez MRK, Mahiques MM (2010) Variações morfológicas no prisma praial da Ilha Comprida (Sudeste do Brasil)—Subsídios para uma Gestão Costeira Sustentável. Revista da Gestão Costeira Integrada 10(3):361–379CrossRefGoogle Scholar
  23. Martinho CT, Dillenburg SR, Hesp P (2009) Wave energy and longshore sediment transport gradients controlling barrier evolution in Rio Grande do Sul, Brazil. J Coast Res 25(2):285–293CrossRefGoogle Scholar
  24. Mesquita AR, Harari J (1983) Tides and tide gauges of Cananéia and Ubatuba—Brazil (Lat. 24°). Instituto Oceanográfico, Universidade de São Paulo, São Paulo, pp 1–14, Relatório, 11Google Scholar
  25. Miller JK, Dean RG (2004) A simple new shoreline change model. Coast Eng 51(7):531–556CrossRefGoogle Scholar
  26. Nascimento Jr DR (2006) Morfologia e sedimentologia ao longo do sistema praia – duna frontal da Ilha Comprida, SP. Dissertação de mestrado. Instituto de Geociências. 155pGoogle Scholar
  27. Pianca C, Mazzini PLF, Siegle E (2010) Brazilian offshore wave climate based on NWW3 reanalysis. Braz J Oceanogr 58(1):53–70CrossRefGoogle Scholar
  28. Pianca C, Holman R, Siegle E (2015) Shoreline variability from days to decades: results of long-term video imaging. J Geophys Res Oceans 120:2159–2178. doi: 10.1002/2014JC010329 CrossRefGoogle Scholar
  29. Santos SLC (2005) Um modelo de banco de dados geográficos para a resposta ao derramamento de óleo baseado na vulnerabilidade e sensibilidade do litoral paulista. Instituto Oceanográfico, Universidade de São Paulo, Tese de Doutorado, p 216Google Scholar
  30. Short AD (1978) Wave power and beach stages: a global model. In: INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING, 16. Hamburg, 1978. Proceedings. Hamburg, ASCE. pp. 1045-1062Google Scholar
  31. Siegle E, Asp NE (2007) Wave refraction and longshore transport patterns along the southern Santa Catarina coast. Braz J Oceanogr 55(2):109–120CrossRefGoogle Scholar
  32. Sousa PHGO (2013) Vulnerabilidade à erosão costeira no litoral de São Paulo: interação entre processos costeiros e atividades antrópicas. Tese de Doutorado. Instituto Oceanográfico da Universidade de São PauloGoogle Scholar
  33. Souza, CR de G (1997) As células de deriva litorânea e a erosão nas praias do Estado de São Paulo. Tese de Doutorado. Universidade de São Paulo, Instituto de Geociências, 2vGoogle Scholar
  34. Souza CRG, Suguio K (1996) Coastal erosion and beach morphodynamics along the State of São Paulo (SE Brazil). An Acad Bras Cienc 68:405–424Google Scholar
  35. Stive MJF, Aarninkhof SGJ, Hamm L, Hanson H, Larson M, Wijnberg KL, Nicholls RJ, Capobianco M (2002) Variability of shore and shoreline evolution. Coast Eng 47(2):211–235CrossRefGoogle Scholar
  36. Stone GW, JR Stapor FW, May JP, Morgan JP (1992) Multiple Sediment sources and a cellular, non-integrated, longshore drift system: Northwest Florida and Southwest Alabama coast. USA Marine Geol 105:101–154Google Scholar
  37. Tessler MG (1988) Dinâmica sedimentar quaternária no litoral sul paulista. Tese de doutorado. Universidade de São Paulo, Instituto Oceanográfico. p 276Google Scholar
  38. Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov DV, Chao YY, Chen HS, Gerald VM (2002) Development and implementation of wind-generated ocean surfacewave models at NCEP, vol 17. American Meteorological Society, Washington, D.C, pp 311–333Google Scholar
  39. van Rijn LC (2011) Coastal erosion and control. Ocean Coast Manag 54:867–887CrossRefGoogle Scholar
  40. Wang XLL, Swail VR (2001) Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J Clim 14:2204–2221CrossRefGoogle Scholar
  41. Zenkovich VP (1967) Processes of coastal development. Oliver & Boyd, Edinburgh, p 738Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Filipe Galiforni Silva
    • 1
  • Paulo Henrique Gomes de Oliveira Sousa
    • 2
  • Eduardo Siegle
    • 2
  1. 1.Water Engineering and ManagementUniversity of TwenteEnschedeThe Netherlands
  2. 2.Instituto OceanográficoUniversidade de São PauloSão PauloBrazil

Personalised recommendations