Ocean Dynamics

, Volume 66, Issue 5, pp 605–621 | Cite as

Subsurface hydrographic structures and the temporal variations of Aleutian eddies

  • Rui Saito
  • Ichiro Yasuda
  • Kosei Komatsu
  • Hiromu Ishiyama
  • Hiromichi Ueno
  • Hiroji Onishi
  • Takeshi Setou
  • Manabu Shimizu


Aleutian eddies are mesoscale anticyclonic eddies formed within the Alaskan Stream region between 180° meridian and 170° E south of the Aleutian Islands. They propagate southwestward after the isolation from the Alaskan Stream and pass through the Western Subarctic Gyre. We compared hydrographic structures of three Aleutian eddies observed during summer, west of 170° E (Eddy A) and east of 170° E (Eddies B and C). In each eddy, a subsurface dichothermal water (3.0–4.0 °C) was observed above a subsurface mesothermal water (4.0–4.5 °C). The minimum temperature in the dichothermal water at around a depth of 100 m was colder in Eddy A (2.8 °C) than in Eddies B and C (3.0–3.2 °C). This difference could be ascribed to wintertime cooling and influence of surrounding waters during spring warming period. The wintertime cooling makes the dichothermal water colder for eddies isolated from the Alaskan Stream region for a longer time. Particle-tracking experiments using re-analysis products from a data-assimilative eddy resolving ocean model suggested that the dichothermal water within Eddy A was cooled by the entrainment of surrounding colder water even during the spring warming period. The mesothermal waters at depth around 250 m demonstrated similarity among the observed eddies, and the maximum temperature in the mesothermal water within Eddy A (4.3 °C) was close to that of Eddies B and C (4.2 °C) in the in situ observations. These results indicated that the dichothermal water of Aleutian eddies modifies over time, whereas the mesothermal water maintains the original feature as they propagate southwestward from the Alaskan Stream region to the Western Subarctic Gyre.


Aleutian eddy Hydrographic structure Aleutian Islands Alaskan stream 



We express our thanks to the captain, officers, and crew members of T/S Oshoro-maru, School of Fisheries Sciences, Hokkaido University and the members of Physical Oceanography Laboratory, Graduate School of Fisheries Sciences, Hokkaido University for their help in data collection at sea. The altimeter products were produced by SSALTO/DUCSCS and distributed by AVISO with support from Collecte Localisation Satellites. The FRA-ROMS re-analysis dataset were generated and provided by National Research Institute of Fisheries Science, Fisheries Research Agency of Japan. The sea surface temperature (GHRSST) was provided by Physical Oceanography Distributed Active Archive Center, NASA Jet Propulsion Laboratory. The climatological net surface heat flux was produced and provided by National Oceanography Centre, Natural Environment Research Council. The present study was partially supported by Grant-in-Aid for JSPS Fellows 25–271, KAKENHI Grant 25257206/15H05818 of the Japan Society for the Promotion of Science (JSPS). We also thank Professor Joerg-Olaf Wolff, Chief Editor; Dr. Pierre De Mey, Associate Editor of Ocean Dynamics; and two anonymous reviewers. Their valuable comments were helpful and greatly improved the present manuscript.

Supplementary material

10236_2016_936_MOESM1_ESM.pptx (209 kb)
Fig. S1 Isolation of Eddy A from the Alaskan Stream region from the late March to the mid-April 2010. Contour shows absolute dynamic height (cm) from AVISO. Bold contours (10 and 12 cm in the absolute dynamic height) correspond to the outer edge of Alaskan Stream (PPTX 208 kb)
10236_2016_936_MOESM2_ESM.pptx (451 kb)
Fig. S2 Same as Fig. 7 but for the experiments at depth of 125 m (PPTX 450 kb)
10236_2016_936_MOESM3_ESM.pptx (419 kb)
Fig. S3 Same as Fig. 7 but for the experiments at depth of 150 m (PPTX 418 kb)


  1. Brown MT, Lippiatt SM, Lohan MC, Bruland KW (2012) Trace metal distributions within a Sitka eddy in the northern Gulf of Alaska. Limnol Oceanogr 57(2):503–518. doi: 10.4319/lo.2012.57.2.0503 CrossRefGoogle Scholar
  2. Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34, L15606. doi: 10.1029/2007GL030812 CrossRefGoogle Scholar
  3. Collecte Localisation Satellites (2014) SSALTO/DUACS user handbook: (M) SLA and (M) ADT near real time and delayed time products, version 4 rev. 1, rep. SALP-MU-P-EA-21065-CLS. CLS, Ramonville-St-Agne, France, p 72Google Scholar
  4. Crawford WR (2005) Heat and fresh water transport by eddies into the Gulf of Alaska. Deep-Sea Res II 52:893–908. doi: 10.1016/j.dsr2.2005.02.003 CrossRefGoogle Scholar
  5. Crawford WR, Brickley PJ, Thomas AC (2007) Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska. Prog Oceanogr 75:287–303. doi: 10.1016/j.pocean.2007.08.016 CrossRefGoogle Scholar
  6. Favorite F (1967) The Alaskan Stream. In N Pac Fish Comm Bull 21:1–20, Google Scholar
  7. Fujii Y, Kamachi M (2003) A reconstruction of observed profiles in the sea east of Japan using vertical coupled temperature-salinity EOF modes. J Oceanogr 59(2):173–186. doi: 10.1023/A:1025539104750 CrossRefGoogle Scholar
  8. GHRSST Science Team (2011) The recommended GHRSST data specification (GDS) 2.0, document revision 4. The GHRSST International Project Office, Physical Oceanography Distributed Active Archive Center, NASA Jet Propulsion Laboratory, DAAC, Pasadena, p 123Google Scholar
  9. Grist JP, Josey SA (2003) Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints. J Clim 16(20):3274–3294. doi: 10.1175/1520-0442(2003)016<3274:IAAOTS>2.0.CO;2 CrossRefGoogle Scholar
  10. Henson SA, Thomas AC (2008) A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep-Sea Res I 55:163–176. doi: 10.1016/j.dsr.2007.11.005 CrossRefGoogle Scholar
  11. Hokkaido University (2011) Data record of oceanographic observation and exploratory fishing no. 54. In: Saitoh, SI (ed) Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan, p 192Google Scholar
  12. Ikenoue T, Ueno H, Takahashi K (2012) Rhizoplegma boreale (Radiolaria): a tracer for mesoscale eddies from coastal areas. J Geophys Res 117, C04001. doi: 10.1029/2011JC007728 CrossRefGoogle Scholar
  13. Inatsu M (2009) The neighbor enclosed area tracking algorithm for extra-tropical wintertime cyclones. Atmos Sci Lett 10:267–272. doi: 10.1002/asl.238 Google Scholar
  14. Ladd C, Kachel NB, Mordy CW, Stabeno PJ (2005) Observations from a Yakutat eddy in the northern Gulf of Alaska. J Geophys Res 110, C03003. doi: 10.1029/2004JC002710 CrossRefGoogle Scholar
  15. Ladd C, Mordy CW, Kachel NB, Stabeno PJ (2007) Northern Gulf of Alaska eddies and associated anomalies. Deep-Sea Res I 54:487–509. doi: 10.1016/j.dsr.2007.01.006 CrossRefGoogle Scholar
  16. Ohtani K (1973) Oceanographic structures in the Bering Sea. Fac Fish Hokkaido Univ 21(1):65–106, Google Scholar
  17. Ohtani K, Onishi H, Kobayashi N, Anma G (1997) Baroclinic flow referred to the 3000 m reference level across the 180° transect in the subarctic North Pacific. Bull Fac Fish Hokkaido Univ 48(3):53–64, Google Scholar
  18. Okubo A (1970) Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences. Deep-Sea Res 17(3):445–454. doi: 10.1016/0011-7471(70)90059-8 Google Scholar
  19. Onishi H (2001) Spatial and temporal variability in a vertical section across the Alaskan Stream and Subarctic Current. J Oceanogr 57(1):79–91. doi: 10.1023/A:1011178821299 CrossRefGoogle Scholar
  20. Onishi H, Ohtani K (1999) On seasonal and year-to-year variation in flow of the Alaskan Stream in the central North Pacific. J Oceanogr 55(5):597–608. doi: 10.1023/A:1007840802296 CrossRefGoogle Scholar
  21. Prants SV, Andreev AG, Budyansky MV, Uleysky MY (2013) Impact of mesoscale eddies on surface flow between the Pacific Ocean and the Bering Sea across the Near Strait. Ocean Model 72:143–152. doi: 10.1016/j.ocemod.2013.09.003 CrossRefGoogle Scholar
  22. Reed RK, Stabeno PJ (1993) The recent return of the Alaskan Stream to Near Strait. J Mar Res 51(3):515–527. doi: 10.1357/0022240933224025 CrossRefGoogle Scholar
  23. Reed RK, Stabeno PJ (1999) Recent full-depth survey of the Alaskan Stream. J Oceanogr 55(1):79–85. doi: 10.1023/A:1007813206897 CrossRefGoogle Scholar
  24. Rogachev KA, Shlyk NV (2009) The increased radius of the Aleutian eddies and their long-term evolution. Russ Meteorol Hydrol 35(3):206–210. doi: 10.3103/S1068373910030076 CrossRefGoogle Scholar
  25. Rogachev K, Shlyk N, Carmack E (2007) The shedding of mesoscale eddies from the Alaskan Stream and westward transport of warm water. Deep-Sea Res II 54:2643–2656. doi: 10.1016/j.dsr2.2007.08.017 CrossRefGoogle Scholar
  26. Saito R, Yamaguchi A, Yasuda I, Ueno H, Ishiyama H, Onishi H, Imai I (2014) Influences of mesoscale anticyclonic eddies on zooplankton community south of the western Aleutian Islands during the summer of 2010. J Plankton Res 36(1):117–128. doi: 10.1093/plankt/fbt087 CrossRefGoogle Scholar
  27. Stabeno PJ, Hristova HS (2014) Observations of the Alaskan Stream near the Samalga Pass and its connection to the Bering Sea: 2001–2004. Deep-Sea Res I 88:30–46. doi: 10.1016/j.dsr.2014.03.002 CrossRefGoogle Scholar
  28. Ueno H, Yasuda I (2000) Distribution and formation of the mesothermal structure (temperature inversions) in the North Pacific subarctic region. J Geophys Res 105(C7):16885–16897. doi: 10.1029/200JC900020 CrossRefGoogle Scholar
  29. Ueno H, Yasuda I (2005) Temperature inversions in the subarctic Pacific. J Phys Oceanogr 35:2444–2456. doi: 10.1175/JPO2829.1 CrossRefGoogle Scholar
  30. Ueno H, Oka E, Suga T, Onishi H (2005) Seasonal and interannual variability of temperature inversions in the subarctic North Pacific. Geophys Res Lett 32, L20603. doi: 10.1029/2005GL023948 CrossRefGoogle Scholar
  31. Ueno H, Oka E, Suga T, Onishi H, Roemmich D (2007) Formation and variation of temperature inversions in the eastern subarctic North Pacific. Geophys Res Lett 34, L05603. doi: 10.1029/2006GL028715 CrossRefGoogle Scholar
  32. Ueno H, Freeland H, Crawford WR, Onishi H, Oka E, Sato K, Suga T (2009) Anticyclonic eddies in the Alaskan Stream. J Phys Oceanogr 39:934–951. doi: 10.1175/2008JPO3948.1 CrossRefGoogle Scholar
  33. Ueno H, Crawford WR, Onishi H (2010) Impact of Alaskan Stream eddies on chlorophyll distribution in the North Pacific. J Oceanogr 66(3):319–328. doi: 10.1007/s10872-010-0028-6 CrossRefGoogle Scholar
  34. Ueno H, Yasuda I, Itoh S, Onishi H, Hiroe Y, Suga T, Oka E (2012) Modification of a Kenai eddy along the Alaskan stream. J Geophys Res 117, C08032. doi: 10.1029/2011JC007506 Google Scholar
  35. Weiss J (1991) The dynamics of enstrophy transfer in two dimensional hydrodynamics. Phys D 48(2–3):273–294. doi: 10.1016/0167-2789(91)90088-Q CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rui Saito
    • 1
  • Ichiro Yasuda
    • 1
  • Kosei Komatsu
    • 1
    • 2
  • Hiromu Ishiyama
    • 3
  • Hiromichi Ueno
    • 4
  • Hiroji Onishi
    • 4
  • Takeshi Setou
    • 5
  • Manabu Shimizu
    • 5
  1. 1.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  2. 2.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  3. 3.Graduate School of Environmental ScienceHokkaido UniversityHakodateJapan
  4. 4.Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  5. 5.Fisheries Research AgencyNational Research Institute of Fisheries ScienceYokohamaJapan

Personalised recommendations