Ocean Dynamics

, Volume 65, Issue 9–10, pp 1249–1268 | Cite as

Altimetric Lagrangian advection to reconstruct Pacific Ocean fine-scale surface tracer fields

  • Marine Rogé
  • Rosemary A. Morrow
  • Guillaume Dencausse
Article

Abstract

In past studies, Lagrangian stirring of surface tracer fields by altimetric surface geostrophic currents has been performed in different mid- to high-latitude regions, showing good results in reconstructing finer scale tracer patterns. Here, we explore the pertinence of the technique in the western equatorial Pacific and in the subtropical southwest Pacific. Initial conditions are derived from weekly gridded low-resolution temperature and salinity fields based on in situ hydrographic data. Validation of the reconstructed fine-scale surface tracer fields is performed using satellite AMSRE Sea Surface Temperature data and high-resolution ship thermosalinograph data. We test two kinds of Lagrangian advection. The standard one-way advection leads to an increased error as the advection time increases, due to the missing physics, such as air-sea fluxes or non-geostrophic dynamics. A second “backward-forward” advection technique is explored to reduce this bias in the tracer field, with improved results. In the subtropical southwest Pacific Ocean, the mesoscale temperature and salinity fronts are well represented by both Lagrangian advection techniques over a short 7- to 14-day advection time, including westward-propagating features not apparent in the initial fields. In the tropics, the results are less clear. The validation is hampered by the complex vertical stratification, and the lateral stirring technique is limited by the pertinence of using geostrophic surface current fields in the tropics. We suggest that the passive lateral stirring technique is efficient in regions with moderate to high mesoscale energy, where mesoscale surface tracer and surface height fields are correlated. In other regions, more complex dynamical processes may need to be included.

Keywords

Sea surface temperature Sea surface salinity Lagrangian analysis Altimetric geostrophic currents Pacific Ocean Upper ocean circulation 

References

  1. Abernathey RP, Marshall J (2013) Global surface eddy diffusivities derived from satellite altimetry. J Geophys Res Oceans 118:901–916. doi:10.1002/jgrc.20066 CrossRefGoogle Scholar
  2. Autret E (2014) Analyse des champs de température de surface de la mer à partir d’observations satellite multi-sourcesGoogle Scholar
  3. Berti S, Lapeyre G (2014) Lagrangian reconstructions of temperature and velocity in a model of surface ocean turbulence. Ocean Model 76:59–71. doi:10.1016/j.ocemod.2014.02.003 CrossRefGoogle Scholar
  4. Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114, C06023. doi:10.1029/2008JC005187 Google Scholar
  5. Boutin J, Martin N, Reverdin G et al (2014) Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations. J Geophys Res Oceans 119:5533–5545. doi:10.1002/2014JC010070 CrossRefGoogle Scholar
  6. Cravatte S, Delcroix, Zhang D, et al. (2009) Observed freshening and warming of the western Pacific warm pool. doi: 0.1007/s00382-009-0526-7Google Scholar
  7. Cravatte S, Kessler WS, Marin F (2012) Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J Phys Oceanogr 42:1475–1485. doi:10.1175/JPO-D-11-0206.1 CrossRefGoogle Scholar
  8. Delcroix T, Picaut J (1998) Zonal displacement of the western equatorial Pacific “fresh pool”. J Geophys Res 103:1087–1098. doi:10.1029/97JC01912 CrossRefGoogle Scholar
  9. Dencausse G, Morrow R, Rogé M, Fleury S (2014) Lateral stirring of large-scale tracer fields by altimetry. Ocean Dyn 64:61–78. doi:10.1007/s10236-013-0671-8 CrossRefGoogle Scholar
  10. Desprès A, Reverdin G, D’ Ovidio F (2011) Mechanisms and spatial variability of meso scale frontogenesis in the northwestern subpolar gyre. Ocean Model 39:97–113. doi:10.1016/j.ocemod.2010.12.005 CrossRefGoogle Scholar
  11. Dibarboure G, Boy F, Desjonqueres JD et al (2014) Investigating short-wavelength correlated errors on low-resolution mode altimetry. J Atmos Ocean Technol 31:1337–1362. doi:10.1175/JTECH-D-13-00081.1 CrossRefGoogle Scholar
  12. Dohan K, Maximenko N (2010) Monitoring ocean currents with satellite sensors. Oceanography 23:94CrossRefGoogle Scholar
  13. Durack PJ, Wijffels SE (2010) Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23:4342–4362. doi:10.1175/2010JCLI3377.1 CrossRefGoogle Scholar
  14. Fu L-L, Alsdorf D, Rodriguez E, et al. (2009) The SWOT (surface water and ocean topography) mission: spaceborne radar interferometry for oceanographic and hydrological applications. OCEANOBS’09 Conference ProceedingsGoogle Scholar
  15. Gaillard F (2012) ISAS-tool version 6 : method and configuration. http://dx.doi.org/10.13155/22583
  16. Henocq C, Boutin J, Reverdin G et al (2010) Vertical variability of near-surface salinity in the tropics: consequences for L-band radiometer calibration and validation. J Atmos Ocean Technol 27:192–209. doi:10.1175/2009JTECHO670.1 CrossRefGoogle Scholar
  17. Kessler WS, Cravatte S (2013) Mean circulation of the Coral Sea. J Geophys Res Oceans 118:6385–6410. doi:10.1002/2013JC009117 CrossRefGoogle Scholar
  18. Lapeyre G, Klein P (2006) Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J Phys Oceanogr 36:165–176. doi:10.1175/JPO2840.1 CrossRefGoogle Scholar
  19. Lehahn Y, D’ Ovidio F, Lévy M, Heifetz E (2007) Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J Geophys Res 112, C08005. doi:10.1029/2006JC003927 Google Scholar
  20. Maes C, Ando K, Delcroix T et al (2006) Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett 33, L06601. doi:10.1029/2005GL024772 CrossRefGoogle Scholar
  21. Maharaj AM, Holbrook NJ, Cipollini P (2009) Multiple westward propagating signals in South Pacific sea level anomalies. J Geophys Res 114, C12016. doi:10.1029/2008JC004799 CrossRefGoogle Scholar
  22. Marshall J, Shuckburgh E, Jones H, Hill C (2006) Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J Phys Oceanogr 36:1806–1821. doi:10.1175/JPO2949.1 CrossRefGoogle Scholar
  23. Morrow R, Le Traon P-Y (2012) Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv Space Res 50:1062–1076. doi:10.1016/j.asr.2011.09.033 CrossRefGoogle Scholar
  24. Morrow R, Donguy J-R, Chaigneau A, Rintoul SR (2004) Cold-core anomalies at the subantarctic front, south of Tasmania. Deep-Sea Res I Oceanogr Res Pap 51:1417–1440. doi:10.1016/j.dsr.2004.07.005 CrossRefGoogle Scholar
  25. Picaut J, Hayes SP, McPhaden MJ (1989) Use of the geostrophic approximation to estimate time-varying zonal currents at the equator. J. Geophys Res 94:3228–3236Google Scholar
  26. Picaut J, Ioualalen M, Menkes C et al (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489Google Scholar
  27. Picaut J, Ioualalen M, Delcroix T et al (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Niño-Southern Oscillation and biogeochemical phenomena. J Geophys Res 106:2363–2386. doi:10.1029/2000JC900141 CrossRefGoogle Scholar
  28. Ponte AL, Klein P, Capet X et al (2013) Diagnosing surface mixed layer dynamics from high-resolution satellite observations: numerical insights. J Phys Oceanogr 43:1345–1355. doi:10.1175/JPO-D-12-0136.1 CrossRefGoogle Scholar
  29. Qiu B, Chen S (2004) Seasonal modulations in the eddy field of the South Pacific Ocean. J Phys Oceanogr 34:1515–1527. doi:10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2 CrossRefGoogle Scholar
  30. Reid JL (1997) On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Prog Oceanogr 39:263–352. doi:10.1016/S0079-6611(97)00012-8 CrossRefGoogle Scholar
  31. Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res Oceans 116, C07018. doi:10.1029/2010JC006505 CrossRefGoogle Scholar
  32. Rogé M, Morrow RA (2014) Using altimetric Lagrangian advection to reconstruct fine scale SSS fields in the tropical and subtropical Pacific. CTOHIntrenal Report, No. 01–2014Google Scholar
  33. Roundy PE, Kravitz JR (2009) The Association of the Evolution of Intraseasonal Oscillations to ENSO Phase. J Clim 22:381–395. doi:10.1175/2008JCLI2389.1 CrossRefGoogle Scholar
  34. Sallée JB, Speer K, Morrow R, Lumpkin R (2008) An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J Mar Res 66:441–463. doi:10.1357/002224008787157458 CrossRefGoogle Scholar
  35. Seo H, Jochum M, Murtugudde R et al (2008) Precipitation from African easterly waves in a coupled model of the tropical Atlantic. J Clim 21:1417–1431. doi:10.1175/2007JCLI1906.1 CrossRefGoogle Scholar
  36. Sudre J, Morrow RA (2008) Global surface currents: a high-resolution product for investigating. Ocean Dyn 58:101–118. doi:10.1007/s10236-008-0134-9 CrossRefGoogle Scholar
  37. Sudre J, Maes C, Garçon V (2013) On the global estimates of geostrophic and Ekman surface currents. Limnol Oceanogr 3:1–20. doi:10.1215/21573689-2071927 CrossRefGoogle Scholar
  38. Webb DJ (2000) Evidence for shallow zonal jets in the south equatorial current region of the Southwest Pacific. J Phys Oceanogr 30:706–720. doi:10.1175/1520-0485(2000)030<0706:EFSZJI>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marine Rogé
    • 1
  • Rosemary A. Morrow
    • 1
  • Guillaume Dencausse
    • 1
  1. 1.LEGOS / OMPToulouseFrance

Personalised recommendations