Ocean Dynamics

, Volume 65, Issue 9–10, pp 1235–1247 | Cite as

Assessing the impact of various wind forcing on INCOIS-GODAS simulated ocean currents in the equatorial Indian Ocean

  • Sanikommu Sivareddy
  • Muthalagu Ravichandran
  • Madathil Sivasankaran Girishkumar
  • Koneru Venkata Siva Rama Prasad
Article

Abstract

The Global Ocean Data Assimilation System configured at Indian National Centre for Ocean Information Services (INCOIS-GODAS) has been forced with satellite-based QuikSCAT gridded winds (QSCAT) to obtain accurate operational ocean analysis, particularly ocean currents, as compared to the default National Centers for Environmental Prediction-Reanalysis 2 (NCEP-R2) wind forcing in the tropical Indian Ocean (TIO). However, after termination of QuikSCAT mission in November 2009, an alternate wind forcing was required for providing operational ocean analysis. The present study examines the suitability of an Advanced Scatterometer (ASCAT)-based daily gridded wind product (DASCAT) for the INCOIS-GODAS. Experiments were performed by forcing INCOIS-GODAS with three different momentum fluxes derived from QSCAT, DASCAT, and NCEP-R2 wind products. Simulated ocean currents from these experiments are validated with respect to in situ current measurements from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) buoys. Results suggested that the quality of simulated ocean currents from the daily DASCAT forcing is on par with the QSCAT forcing in the TIO, except for the equatorial Indian Ocean (EIO). Although QSCAT-forced current simulations are slightly better than DASCAT-forced simulations, both QSCAT and DASCAT provide a much better result than NCEP-R2. Our analysis shows that the better simulations of currents over the EIO, with the QSCAT forcing compared to DASCAT forcing, can be attributed to the smoothening of the wind field in the DASCAT compared to QSCAT. The impact of the error in the DASCAT on ocean current analysis is, however, limited to local scales and upper 100 m of water column only. Thus, our study demonstrated that, in the absence of QSCAT, DASCAT is a better alternative for INCOIS-GODAS ocean analysis than the NCEP-R2.

Keywords

Wind evaluation ASCAT Ocean models INCOIS-GODAS Wind error impact Equatorial Indian Ocean 

Notes

Acknowledgments

The encouragement and facilities provided by the Director, INCOIS, are gratefully acknowledged. We would like to thank Dr. Suprith Kumar, INCOIS, and Dr. Uday Bhaskar, INCOIS, for their valuable suggestions towards improving this manuscript. We thank IFREMER for providing DASCAT wind fields through Asia-Pacific Data-Research Center website. QuikSCAT data are produced by Remote Sensing Systems (www.ssmi.com) and sponsored by the NASA Ocean Vector Winds Science Team (www.remss.com). The model experiments are designed and ran on INCOIS-High Performance Computing (HPC) machine. We thank INCOIS-HPC team for their technical support. Graphics are generated using Ferret. We gratefully acknowledge the support provided by Earth System Science Organization, Ministry of Earth Sciences, Government of India, to conduct this research. This is INCOIS contribution No. 228.

References

  1. Agarwal N, Sharma R, Basu S, Sarkar A, Agarwal VK (2008) Evaluation of relative performance of QuikSCAT and NCEP re-analysis winds through simulations by an OGCM. Deep-Sea Res I. 54(8):1311–1328Google Scholar
  2. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean, paper presented at the Eighth symposium on Integrated Observing and Assimilation System for Atmosphere, Ocean, and Land Surface. Am Meteorol Soc, Seattle, Wash, 11-15Google Scholar
  3. Bentamy A, Fillon DC (2012) Gridded surface wind fields from Metop/ASCAT measurements. Int J Remote Sens 33(6):1729–1754CrossRefGoogle Scholar
  4. Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954CrossRefGoogle Scholar
  5. Bryan K, Lewis LJ (1979) A water mass model of the world ocean. J Geophys Res 84:2503–2517CrossRefGoogle Scholar
  6. Bubnov VA (1994) Climatic zonal pressure gradient in the equatorial zone of the Indian Ocean. Oceanography 33:414–420Google Scholar
  7. Chakraborthy A, Sharma R, Kumar R, Basu S (2014) An OGCM assessment of blended OSCAT winds. J Geophys Res 119:173–186. doi:10.1002/2013JC009406 CrossRefGoogle Scholar
  8. Collins C, Reason CJC, Hermes JC (2012) Scatterometer and reanalysis wind products over the western tropical Indian Ocean. J Geophys Res 117, C03045. doi:10.1029/2011JC007531 Google Scholar
  9. Dohan K, Maximenko N (2010) Monitoring ocean currents with satellite sensors. Oceanography 23(4):94–103. doi:10.5670/oceanog.2010.08 CrossRefGoogle Scholar
  10. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  11. Goswami BN, Sengupta D (2003) A note on the deficiency of NCEP/NCAR reanalysis surface winds over the equatorial Indian Ocean. J Geophys Res 108(C4):3124. doi:10.1029/2002JC001497 CrossRefGoogle Scholar
  12. Huang, Boyin, Xue, Yan, Behringer D (2008) Impacts of Argo salinity in NCEP Global ocean data assimilation system: the tropical Indian Ocean. J Geophys Res v 113:C08002. doi:10.1029/2007JC004388 Google Scholar
  13. Johnson ES, Bonjean F, Largerloef GSE, Gunn JT (2007) Validation and error analysis of OSCAR sea surface currents. J Atmos Ocean Technol 24:688–701. doi:10.1175/JTECH1971.1 CrossRefGoogle Scholar
  14. Joseph S, Wallcraft AJ, Jensen TG, Ravichandran M, Shenoi SSC, Nayak S (2012) Weakening of spring Wyrtki jets in the Indian Ocean during 2006-2011. J Geophys Res 117, C04012. doi:10.1029/2011JC007581 Google Scholar
  15. Kalnay E, Kanamitsu M, Kisteler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  16. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  17. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  18. Lin W, Portabella M, Stoffelen A, Verhoef A, Turiel A (2015) ASCAT wind quality control near rain. IEEE Trans Geosci Rem Sens 53(8):4165–4177. doi:10.1109/TGRS.2015.2392372 CrossRefGoogle Scholar
  19. McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA the research moored array for African–Asian–Australian monsoon analysis and prediction a new moored buoy array in the historically data-sparse Indian Ocean provides measurements to advance monsoon research and forecasting. Bull Am Meteorol Soc 90:459–480. doi:10.1175/2008BAMS2608.1 CrossRefGoogle Scholar
  20. Ravichandran M, Behringer D, Sivareddy S, Girishkumar MS, Chacko N, Harikumar R (2013) Evaluation of the global ocean data assimilation system at INCOIS: the tropical Indian Ocean. Ocean Modell 69:123–135. doi:10.1016/j.oceamod.2013.05.003 CrossRefGoogle Scholar
  21. Senan R, Sengupta D, Goswami BN (2003) Intraseasonal “monsoon jets” in the equatorial Indian Ocean. Geophys Res Lett 30:1750. doi:10.1029/2003GL017583 CrossRefGoogle Scholar
  22. Sengupta D, Senan R, Goswami BN, Vialard J (2007) Intraseasonal variability of equatorial Indian Ocean zonal currents. J Clim 20:3036–3055. doi:10.1175/JCLI4166.1 CrossRefGoogle Scholar
  23. Sikhakolli R, Sharma R, Basu S, Gohil BS, Sarkar A, Prasad KVSK (2013) Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. J Earth Syst Sci 122(1):187–199CrossRefGoogle Scholar
  24. Sivareddy S, Ravichandran M, Girish Kumar MS (2013) Evaluation of ASCAT based daily gridded winds in the tropical Indian Ocean. J Atmos Ocean Technol 30:1371–1381. doi:10.1175/JTECH-D-12-00227.1 CrossRefGoogle Scholar
  25. Stommel H (1960) Wind-drift near the equator. Deep-Sea Res 6:298–302Google Scholar
  26. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  27. Vogelzang J, Stoffelen A, Verhoef A, Figa-Saldaña J (2011) On the quality of high-resolution scatterometer winds. J Geophys Res 116, C10033. doi:10.1029/2010JC006640 CrossRefGoogle Scholar
  28. Wentz FJ, Smith DK, Mears CA, Gentemann CL (2001) Advanced algorithms for QuikSCAT and SeaWinds/AMSR. In: Geoscience and Remote Sensing Symposium, IEEE 2001 International, 3; 1079-1081, doi: 10.1109/IGARSS.2001.976752, Institute of Electrical and Electronics Engineers, New York

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sanikommu Sivareddy
    • 1
  • Muthalagu Ravichandran
    • 1
  • Madathil Sivasankaran Girishkumar
    • 1
  • Koneru Venkata Siva Rama Prasad
    • 2
  1. 1.ESSO-Indian National Centre for Ocean Information ServicesHyderabadIndia
  2. 2.Department of Meteorology and OceanographyAndhra UniversityVisakhapatnamIndia

Personalised recommendations