Ocean Dynamics

, Volume 65, Issue 9–10, pp 1321–1333 | Cite as

Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system: the Dutch Wadden Sea

  • Maximiliano SassiEmail author
  • Matias Duran-Matute
  • Thijs van Kessel
  • Theo Gerkema
Part of the following topical collections:
  1. Topical Collection on Physics of Estuaries and Coastal Seas 2014 in Porto de Galinhas, PE, Brazil, 19-23 October 2014


In multiple tidal-inlet systems such as the Dutch Wadden Sea, the exchange of sediments between the coastal lagoon and the adjacent sea is controlled by the combined effect of the tides, wind-driven flows, and density-driven flows. We investigate the variability of residual (tidally averaged) fluxes of suspended sediment with the three-dimensional numerical model GETM in relation to forcing mechanisms and model parameters. Sediment transport is modeled with three sediment classes. A modified Partheniades-Krone formulation describes the erosion and deposition fluxes from a single-layer sediment pool. The model is initialized with a uniform sediment pool for each class and the spin up period amounts to six months. Simulations span 1 year. Comparisons with observations show that model results are fairly realistic. Residual fluxes of water and suspended sediment are episodic in nature and vary strongly throughout the year, mainly due to wind variability. The net balance between import and export of material is very sensitive to model parameters. Residual fluxes are sensitive to the geographical orientation and location of the inlets, and the effect of driving mechanisms on the residual fluxes and concentrations can be organized hierarchically, with wind forcing having the largest effect on concentration levels and variability.


Residual flux Mud transport Numerical model Tidal inlet 



This work was supported through the project PACE. (The future of the Wadden Sea sediment fluxes: still keeping pace with sea level rise?) by Netherlands organization for scientific research (NWO, ZKO-project 839.11.003). The authors would like to thank the Ministry of Public Works (Rijkswaterstaat) for making publicly available the data employed in this study, and Ulf Gräwe for fruitful discussions on the implementation of the sediment transport module. This manuscript has benefited from the comments and suggestions from two anonymous reviewers.


  1. Beets D, van der Spek A (2000) The Holocene evolution of the barrier and the back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Neth J Geosci 79:3–16Google Scholar
  2. Buijsman M C, Ridderinkhof H (2007) Long-term ferry-ADCP observations of tidal currents in the Marsdiep inlet. J Sea Res 57(4):237–256. doi: 10.1016/j.seares.2006.11.004 CrossRefGoogle Scholar
  3. Burchard H, Baumert H (1995) On the performace of a mixed-layer model based on the κ𝜖 turbulence closure. J Geophys Res 100(C5):8523–8540. doi: 10.1029/94JC03229 CrossRefGoogle Scholar
  4. Burchard H, Flöser G, Staneva J V, Riethmüller R, Badewien T (2008) Impact of density gradients on net sediment transport into the Wadden Sea. J Phys Oceanogr 38:566–587CrossRefGoogle Scholar
  5. Duran-Matute M, Gerkema T (subm.) Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period. Ocean Dynam subm.:submGoogle Scholar
  6. Duran-Matute M, Gerkema T, de Boer G, Nauw JJ, Gräwe U (2014) Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study. Ocean Sci 10:611–632. doi: 10.5194/os-10-611-2014 CrossRefGoogle Scholar
  7. Elias E, Cleveringa J, Buijsman M, Roelvink J, Stive M (2006) Field and model data analysis of sand transport patterns in Texel tidal inlet (the Netherlands). Coast Eng 53:505–529CrossRefGoogle Scholar
  8. Elias E, van der Spek A, Wang Z (2012) Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Neth J Geosci 91(3):293–310Google Scholar
  9. Esparza A, Douillet P, Zavala-Hidalgo J (2014) Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling. Ocean Dyn 64(9):1349–1371. doi: 10.1007/s10236-014-0752-3 CrossRefGoogle Scholar
  10. Gerkema T, Nauw J, van der Hout C (2014) Measurements on the transport of suspended particulate matter in the Vlie inlet. Neth J Geosci 93:95–105. doi: 10.1017/njg.2014.7 Google Scholar
  11. Gourgue O, Baeyens W, Chen M, de Brauwere A, de Brye B, Deleersnijder E, Elskens M, Legat V (2013) A depth-averaged sediment transport model for environmental studies in the Scheldt estuary and tidal river network. J Marine Syst 128:27–39CrossRefGoogle Scholar
  12. Gräwe U, Burchard H, Müller M, Schuttelaars H M (2014) Seasonal variability in M2 and M4 tidal constituents and its implications for the coastal residual sediment transport. Geophys Res Lett 41:5563–5570. doi: 10.1002/2014GL060517 CrossRefGoogle Scholar
  13. van Kessel T, Vanlede J (2011a) Development of a mud transport model for the Scheldt estuary. Cont Shelf Res 31(10):S165—S181. doi: 10.1016/j.csr.2010.12.006 Google Scholar
  14. van Kessel T, Winterwerp J, van Prooijen B, van Ledden M, Borst W (2011b) Modelling the seasonal dynamics of SPM with a simple algorithm for the buffering of fines in a sandy seabed. Cont Shelf Res 31:S124–S134. doi: 10.1016/j.csr.2010.04.008 CrossRefGoogle Scholar
  15. Li C (2013) Subtidal water flux through a multiple-inlet system: Observations before and during a cold front event and numerical experiments. J Geophys Res 118:1877–1892. doi: 10.1002/jgrc.20149 CrossRefGoogle Scholar
  16. van Maren D, van Kessel T, Cronin K, Sittoni L (2015) The impact of channel deepening and dredging on estuarine sediment concentration. Cont Shelf Res 95:1–14. doi: 10.1016/j.csr.2014.12.010
  17. Nauw JJ, Merckelbach L M, Ridderinkhof H, van Aken H (2014) Long-term ferry-based observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers. J Sea Res 87:17–29. doi: 10.1016/j.seares.2013.11.013 CrossRefGoogle Scholar
  18. Pacheco A, Ferreira A, Williams J J, Garel E, Vila-Concejo A, Dias J A (2010) Hydrodynamics and equilibrium of a multiple-inlet system. Mar Geol 274(1-4):32–42. doi: 10.1016/j.margeo.2010.03.003 CrossRefGoogle Scholar
  19. Ridderinkhof H (1988) Tidal and residual flows in the Western Dutch Wadden Sea I: numerical model results. Neth J Sea Res 22(1):1–21. doi: 10.1016/0077-7579(88)90049-X CrossRefGoogle Scholar
  20. Ridderinkhof H (1998) On the sensitivity of the large scale transport and distribution of fine grained sediments in a tidal basin to the formulation of the erosion-sedimentation cycle. In: Dronkers J, Sheffers M (eds) Physics of estuaries and coastal seas, Balkema, pp 145–153Google Scholar
  21. van Rijn LC (2007) Unified view of sediment transport by currents and waves. II: suspended transport. J Hydraul Eng 133(6):668–689CrossRefGoogle Scholar
  22. Ruessink B G, Houwman K T, Grasmeijer B T (2006) Modeling the nonlinear effect of wind on rectilinear tidal flow. J Geophys Res 111(C10):2156–2202. doi: 10.1029/2006JC003570 Google Scholar
  23. Salles P, Voulgaris G, Aubrey D G (2005) Contribution of nonlinear mechanisms in the persistence of multiple tidal inlet systems. Estuar Coast Shelf Sci 65(3):475–491. doi: 10.1016/j.ecss.2005.06.018 CrossRefGoogle Scholar
  24. Sassi M, Hoitink A, Vermeulen B (2012) Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations. Water Resour Res 48(W09520). doi: 10.1029/2012WR012008
  25. Sassi M, Gerkema T, Duran-Matute M, Nauw J (subm.) Residual flows in the Marsdiep inlet inferred from observations and a numerical model. J Marine Res subm.:submGoogle Scholar
  26. Sassi M, Hoitink A, de Brye B, Vermeulen B, Deleersnijder E (2011) Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dyn 61:2211–2228. doi: 10.1007/s10236-011-0473-9 CrossRefGoogle Scholar
  27. Stanev E, Wolff J, Burchard H, Bolding K, Flöser G (2003) On the circulation in the East Frisian Wadden Sea: numerical modeling and data analysis. Ocean Dyn 53(1):27–51. doi: 10.1007/s10236-002-0022-7 CrossRefGoogle Scholar
  28. Talke S, Stacey M (2008) Suspended sediment fluxes at an intertidal flat: the shifting influence of wave, wind, tidal, and freshwater forcing. Cont Shelf Res 28:710–725. doi: 10.1016/j.csr.2007.12.003 CrossRefGoogle Scholar
  29. Wang Z, Hoekstra P, Burchard H, Ridderinkhof H, De Swart HE, Stive M (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manage 68:39–57. doi: 10.1016/j.ocecoaman.2011.12.022
  30. Winterwerp J, Van Kesteren W (2004) Introduction to the physics of cohesive sediment in the marine environment. 1st edn. Elsevier, Amsterdam, p 466Google Scholar
  31. Young I, Verhagen L (1996) The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast Eng 29(1-2):47–78. doi: 10.1016/S0378-3839(96)00006-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maximiliano Sassi
    • 1
    Email author
  • Matias Duran-Matute
    • 2
  • Thijs van Kessel
    • 3
  • Theo Gerkema
    • 1
  1. 1.Department of Physical OceanographyNIOZ Royal Netherlands Institute for Sea ResearchTexelThe Netherlands
  2. 2.Fluid Dynamics Laboratory and J.M. Burgers Center, Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Department of Estuaries and CoastsDelftThe Netherlands

Personalised recommendations