Skip to main content

Advertisement

Log in

Wave climate of the Hellenic Seas obtained from a wave hindcast for the period 1960–2001

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The wave climate of the Hellenic Seas and particularly the climate extremes are investigated by means of a 42-year (1960–2001) model hindcast. The wave model, implemented over the Mediterranean basin, is forced by high-resolution winds generated upon downscaling of the ERA40 reanalysis. It is shown that the quality of the hindcast is overall satisfactory; however, extreme wave heights in the Aegean Sea are consistently overestimated. Accordingly, corrections to the original data are applied. The results show that the highest mean wave conditions are located east and west of Crete Island where the northerly air flow exits the Aegean Sea. Extreme waves are the highest outside the Aegean Sea, mainly in the southern Ionian Sea and south of Crete. Nevertheless, high waves also develop around the exits of the Aegean Sea and N-NE of the Cyclades islands. Despite a milder extreme wave climate in the Aegean Sea due to short fetch distances, the mean wave height range is very similar to that of the Ionian Sea. Moreover, in summer, the two seas exhibit similar extreme wave height conditions with the highest extremes found around the exits of the Aegean Sea to the Levantine basin. Storms of a longer duration are also observed in the Aegean Sea. The analysis of long-term trends in the wave climate shows that mean and extreme wave climate as well as the average intensity of extreme events have decreased in the Hellenic Seas. Nevertheless, this decrease has not been monotonic. A turning point is located around year 1981 with the mean and extreme wave height mostly increasing before this year and decreasing afterwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Appendini CM, Torres-Freyermuth A, Salles P et al (2014) Wave climate and trends for the Gulf of Mexico: a 30-yr wave hindcast. J Clim 27:1619–1632. doi:10.1175/JCLI-D-13-00206.1

    Article  Google Scholar 

  • Athanassoulis GA, Skarsoulis EK (1992) Wave and wind Atlas of the North-Eastern Mediterranean Sea. Monogr. Natl. Tech. Univ. Athens Hell. Navy

  • Caires S (2009) A comparative simulation study of the annual maxima and the peaks-over-threshold methods. Deltares report 1200264-002

  • Caires S, Sterl A (2005) A new nonparametric method to correct model data: application to significant wave height from the ERA-40 Re-analysis. J Atmos Ocean Technol 22:443–459

    Article  Google Scholar 

  • Cavaleri L, Bertotti L (2004) Accuracy of the modelled wind and wave fields in enclosed seas. Tellus A 56:167–175. doi:10.3402/tellusa.v56i2.14398

    Article  Google Scholar 

  • Cavaleri L, Sclavo M (2006) The calibration of wind and wave model data in the Mediterranean Sea. Coast Eng 53:613–627. doi:10.1016/j.coastaleng.2005.12.006

    Article  Google Scholar 

  • Chronis T, Papadopoulos V, Nikolopoulos EI (2011) QuickSCAT observations of extreme wind events over the Mediterranean and Black Seas during 2000–2008. Int J Climatol 31:2068–2077. doi:10.1002/joc.2213

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling on extreme values. Springer

  • Debernard JB, Røed LP (2008) Future wind, wave and storm surge climate in the Northern Seas: a revisit. Tellus A 60:427–438. doi:10.1111/j.1600-0870.2008.00312.x

    Article  Google Scholar 

  • Gulev SK, Grigorieva V, Sterl A, Woolf D (2003) Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J Geophys Res 108:1–21. doi:10.1029/2002JC001437

    Google Scholar 

  • Günther H, Hasselman S, Jansen PAEM (1992) The WAM model cycle 4. Tech. Rep. 4, DKRZ

  • Herrmann MJ, Somot S (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the Mediterranean Sea. Geophys Res Lett 35:1–5. doi:10.1029/2007GL032669

    Google Scholar 

  • Korres G, Papadopoulos A, Katsafados P et al (2011) A 2-year intercomparison of the WAM-Cycle4 and the WAVEWATCH-III wave models implemented within the Mediterranean Sea. Mediterr Mar Sci 12:129–152

    Google Scholar 

  • Kotroni V, Lagouvardos K, Lalas D (2001) The effect of the island of Crete on the Etesian winds over the Aegean Sea. Q J R Meteorol Soc 127:1917–1937. doi:10.1002/qj.49712757604

    Article  Google Scholar 

  • Krokos G, Korres G (2010) Evaluation and corrections of air sea fluxes of a dynamical downscaled version of ERA40 reanalysis dataset for the Mediterranean Sea. In: The significance of marine science and the role of marine scientists in present-day Europe. European Federation of Marine Science and Technology (EFMS), Athens, Greece

  • Lionello P, Sanna A (2005) Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Clim Dyn 25:611–623. doi:10.1007/s00382-005-0025-4

    Article  Google Scholar 

  • Lionello P, Rizzoli PM, Boscolo R (2006) Mediterranean climate variability, developments in earth and environmental sciences. Elsevier

  • Martínez-Asensio A, Marcos M, Jordà G, Gomis D (2013) Calibration of a new wind-wave hindcast in the Western Mediterranean. J Mar Syst 121–122:1–10. doi:10.1016/j.jmarsys.2013.04.006

    Article  Google Scholar 

  • Martucci G, Carniel S, Chiggiato J et al (2010) Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999—an application to the Italian Seas. Ocean Sci 6:525–538. doi:10.5194/os-6-525-2010

    Article  Google Scholar 

  • Medatlas Group (2004) Wind and Wave Atlas of the Mediterranean Sea. West Eur Union

  • Musić S, Nicković S (2008) 44-year wave hindcast for the Eastern Mediterranean. Coast Eng 55:872–880. doi:10.1016/j.coastaleng.2008.02.024

    Article  Google Scholar 

  • NGDC (2006) 2-minute Gridded Global Relief Data (ETOPO2v2). In: Natl. Ocean. Atmos. Admin., U. S. Dept. Commer. http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html

  • Nittis K, Perivoliotis L, Korres G, et al (2010) POSEIDON II: Upgrading the monitoring and forecasting services in the Eastern Mediterranean Sea. In: Dahlin H, et al (eds) Coast. to Glob. Oper. Oceanogr. Achiev. Challenges. Proc. 5th Int. Conf. EuroGOOS 20-22 May, 2008. Exeter, UK, pp 392–398

  • Poupkou A, Zanis P, Nastos P et al (2011) Present climate trend analysis of the Etesian winds in the Aegean Sea. Theor Appl Climatol 106:459–472. doi:10.1007/s00704-011-0443-7

    Article  Google Scholar 

  • Queffeulou P, Bentamy A (2007) Analysis of wave height variability using altimeter measurements: application to the Mediterranean Sea. J Atmos Ocean Technol 24:2078–2092. doi:10.1175/2007JTECH0507.1

    Article  Google Scholar 

  • Queffeulou P, Croizé-Fillon D (2013) Glogal altimeter SWH data set—May 2013. Technical Report. URL ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/

  • Ratsimandresy AW, Sotillo MG, Carretero Albiach JC et al (2008) A 44-year high-resolution ocean and atmospheric hindcast for the Mediterranean Basin developed within the HIPOCAS Project. Coast Eng 55:827–842. doi:10.1016/j.coastaleng.2008.02.025

    Article  Google Scholar 

  • Ruti PM, Marullo S, D’Ortenzio F, Tremant M (2008) Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: analyses, QuikSCAT and buoy data. J Mar Syst 70:33–48. doi:10.1016/j.jmarsys.2007.02.026

    Article  Google Scholar 

  • Soukissian T, Prospathopoulos A, Hatzinaki M, Kabouridou M (2008) Assessment of the wind and wave climate of the Hellenic Seas using 10-year hindcast results. Open Ocean Eng J 1–12

  • Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Van der Westhuysen AJ, van Dongeren AR, Groeneweg J et al (2012) Improvements in spectral wave modeling in tidal inlet seas. J Geophys Res 117:C00J28. doi:10.1029/2011JC007837

    Google Scholar 

  • WAMDI Group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810. doi:10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

    Article  Google Scholar 

  • WASA Group (1998) Changing waves and storms in the Northeast Atlantic? Bull Am Meteorol Soc 79:741–760

    Article  Google Scholar 

  • Weisse R, Günther H (2007) Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn 57:161–172. doi:10.1007/s10236-006-0094-x

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the MEDESS-4MS EU INTERREG MED project. We are grateful to Dr. S. Sommot for providing the atmospheric forcing dataset through the SESAME project. The calibration of the atmospheric dataset was done for the needs of the MEDECOS (MarinERA EU FP6) project. We thank George Krokos for his overall help with the atmospheric dataset. Finally, we also thank Dr. P. Queffeulou for his valuable help on the satellite dataset and its proper use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Zacharioudaki.

Additional information

Responsible Editor: Birgit Andrea Klein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacharioudaki, A., Korres, G. & Perivoliotis, L. Wave climate of the Hellenic Seas obtained from a wave hindcast for the period 1960–2001. Ocean Dynamics 65, 795–816 (2015). https://doi.org/10.1007/s10236-015-0840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0840-z

Keywords

Navigation