Ocean Dynamics

, Volume 65, Issue 3, pp 341–356 | Cite as

Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability

  • H. Palanisamy
  • A. Cazenave
  • T. Delcroix
  • B. Meyssignac
Article

Abstract

This study investigates the spatial trend patterns and variability of observed sea level and upper ocean thermal structure in the Pacific Ocean during the altimetry era (1993–2012), and the role of thermocline depth changes. The observed sea level trend pattern in this region results from the superposition of two main signals: (1) a strong broad-scale V-shaped positive trend anomaly extending to mid-latitudes in the central Pacific and (2) another very strong positive trend anomaly located in the western tropical Pacific within about 120° E–160° E and 20° S–20° N latitude. In this study, we focus on the tropical Pacific (20° N–20° S) where the strongest trends in sea level are observed. By making use of in situ observational data, we study the impact of thermocline depth changes on steric sea level between the surface and 700 m and its relation with the altimetry-based observed sea level changes. This is done by calculating the time-varying thermocline depth (using the 20 °C isotherm depth as a proxy) and estimating the sea level trend patterns of the thermocline-attributed individual steric components. We show that it is essentially the vertical movement of the thermocline that governs most of the observed sea level changes and trends in the tropical Pacific. Furthermore, we also show that in the equatorial band, the changes in the upper ocean thermal structure are in direct response to the zonal wind stress. Away from the equatorial band (say, within 5°–15° latitude), the changes in the upper ocean thermal structure are consistent with the wind stress-generated Rossby waves. We also estimate the contribution of the Interdecadal Pacific Oscillation (IPO) on the vertical thermal structure of the tropical Pacific Ocean. Removing the IPO contribution to the upper layer steric sea level provides a non-negligible residual pattern, suggesting that IPO-related internal ocean variability alone cannot account for the observed trend patterns in the Pacific sea level. It is likely that the residual signal may also reflect non-linear interactions between different natural modes like El Niño Southern Oscillation (ENSO), IPO, etc.

Keywords

Tropical Pacific Wind-driven thermocline depth changes Upper layer steric sea level contribution Internal climate variability Interdecadal Pacific Oscillation 

References

  1. Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5(2):193–201CrossRefGoogle Scholar
  2. Becker M, Meyssignac B, Letetrel C, Llovel W, Cazenave A, Delcroix T (2012) Sea level variations at tropical Pacific islands since 1950. Glob Planet Chang 80–81:85–98. doi:10.1016/j.gloplacha.2011.09.004 CrossRefGoogle Scholar
  3. Becker M, Karpytchev M, Lennartz-Sassinek S (2014) Long-term sea level trends: natural or anthropogenic?. Geophys Res Lett 41(15), 2014GL061027, doi: 10.1002/2014GL061027
  4. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  5. Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res Oceans 116(C7), n/a–n/a, doi: 10.1029/2010JC006759.
  6. Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys Res Lett 30(6), n/a–n/a, doi: 10.1029/2002GL016473
  7. Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res Oceans 110(C9), n/a–n/a, doi: 10.1029/2004JC002817
  8. Cazenave A, Cozannet GL (2014) Sea level rise and its coastal impacts. Earths Future 2(2):15–34. doi:10.1002/2013EF000188 CrossRefGoogle Scholar
  9. Chaen M, Wyrtki K (1981) The 20 °C isotherm depth and sea level in the western equatorial pacific. J Oceanogr Soc Jpn 37(4):198–200. doi:10.1007/BF02309057 CrossRefGoogle Scholar
  10. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  11. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  12. Delcroix T (1998) Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: a tentative overview. J Geophys Res Oceans 103(C9):18611–18633. doi:10.1029/98JC00814 CrossRefGoogle Scholar
  13. Delcroix T, Hénin C (1989) Mechanisms of subsurface thermal structure and sea surface thermohaline variabilities in the southwestern tropical Pacific during 1975–85. J Mar Res 47:777–812CrossRefGoogle Scholar
  14. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17(16):3109–3124. doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2 CrossRefGoogle Scholar
  15. Durand F, Delcroix T (2000) On the variability of the tropical pacific thermal structure during the 1979–96 period, as deduced from XBT sections. J Phys Oceanogr 30(12):3261–3269. doi:10.1175/1520-0485(2000)030<3261:OTVOTT>2.0.CO;2 CrossRefGoogle Scholar
  16. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang 4(3):222–227. doi:10.1038/nclimate2106 CrossRefGoogle Scholar
  17. Folland CK, Parker DE, Colman A, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Nino: decadal and interdecadal climate variability. Springer, Berlin, Refereed book: chapter 4, pp 73–102Google Scholar
  18. Fukumori I, Wang O (2013) Origins of heat and freshwater anomalies underlying regional decadal sea level trends. Geophys Res Lett 40(3):563–567. doi:10.1002/grl.50164 CrossRefGoogle Scholar
  19. Garzoli SL, Katz EJ (1983) The forced annual reversal of the Atlantic north equatorial countercurrent. J Phys Oceanogr 13(11):2082–2090. doi:10.1175/1520-0485(1983)013<2082:TFAROT>2.0.CO;2 CrossRefGoogle Scholar
  20. Gouretski V, Koltermann KP (2007) How much is the ocean really warming?. Geophys Res Lett 34(1), n/a–n/a, doi: 10.1029/2006GL027834
  21. Hamlington BD, Leben RR, Strassburg MW, Nerem RS, Kim K-Y (2013) Contribution of the Pacific Decadal Oscillation to global mean sea level trends. Geophys Res Lett 40(19):5171–5175. doi:10.1002/grl.50950 CrossRefGoogle Scholar
  22. Hamlington BD, Strassburg MW, Leben RR, Han W, Nerem RS, Kim K-Y (2014) Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat Clim Chang 4(9):782–785. doi:10.1038/nclimate2307 CrossRefGoogle Scholar
  23. Han W et al (2013) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dyn 1–23. doi: 10.1007/s00382-013-1951-1
  24. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65(3):287–299. doi:10.1007/s10872-009-0027-7 CrossRefGoogle Scholar
  25. Kessler WS (1990) Observations of long Rossby waves in the northern tropical Pacific. J Geophys Res Oceans 95(C4):5183–5217. doi:10.1029/JC095iC04p05183 CrossRefGoogle Scholar
  26. Köhl A, Stammer D (2008) Decadal sea level changes in the 50-year GECCO ocean synthesis. J Clim 21(9):1876–1890. doi:10.1175/2007JCLI2081.1 CrossRefGoogle Scholar
  27. Köhl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37(2):313–337. doi:10.1175/JPO3014.1 CrossRefGoogle Scholar
  28. Le Traon P-Y, Ogor F (1998) ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2 cm challenge. J Geophys Res 103(C4):8045. doi:10.1029/97JC01917 CrossRefGoogle Scholar
  29. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32(2) doi: 10.1029/2004GL021592
  30. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36(7), n/a–n/a, doi: 10.1029/2008GL037155
  31. Levitus S et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39(10), L10603. doi:10.1029/2012GL051106 Google Scholar
  32. Lombard A, Cazenave A, Le Traon P-Y, Ishii M (2005) Contribution of thermal expansion to present-day sea-level change revisited. Glob Planet Chang 47(1):1–16. doi:10.1016/j.gloplacha.2004.11.016 CrossRefGoogle Scholar
  33. Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a ¼° global ocean/sea-ice hindcast. Ocean Dyn 59(3):433–449. doi:10.1007/s10236-008-0161-6 CrossRefGoogle Scholar
  34. Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. J Oceanogr 58(1):35–44. doi:10.1023/A:1015820616384 CrossRefGoogle Scholar
  35. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 CrossRefGoogle Scholar
  36. Marcos M, Amores A (2014) Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophys. Res. Lett., 41(7) 2014GL059766, doi: 10.1002/2014GL059766
  37. McGregor S, Holbrook NJ, Power SB (2007) Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part I: the role of off-equatorial wind stresses and oceanic Rossby waves. J Clim 20(11):2643–2658. doi:10.1175/JCLI4145.1 CrossRefGoogle Scholar
  38. McGregor S, Holbrook NJ, Power SB (2008) Interdecadal sea surface temperature variability in the equatorial pacific ocean. Part II: the role of equatorial/off-equatorial wind stresses in a hybrid coupled model. J Clim 21(17):4242–4256. doi:10.1175/2008JCLI2057.1 CrossRefGoogle Scholar
  39. McGregor S, Gupta AS, England MH (2012) Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution*. J Clim 25(23) 8164–8176, doi: 10.1175/JCLI-D-12-00105.1
  40. Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26(18):7298–7310. doi:10.1175/JCLI-D-12-00548.1 CrossRefGoogle Scholar
  41. Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24(15):4126–4138. doi:10.1175/2011JCLI3932.1 CrossRefGoogle Scholar
  42. Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett 38. doi: 10.1029/2011GL049576
  43. Merrifield MA, Thompson PR, Lander M (2012) Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys Res Lett 39. doi: 10.1029/2012GL052032
  44. Meyers G (1979) On the annual Rossby wave in the tropical North Pacific Ocean. J Phys Oceanogr 9(4):663–674. doi:10.1175/1520-0485 CrossRefGoogle Scholar
  45. Meyssignac B, Salas y Melia D, Becker M, Llovel W, Cazenave A (2012) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past 8(2):787–802. doi:10.5194/cp-8-787-2012 CrossRefGoogle Scholar
  46. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci. doi:10.1038/ngeo544 Google Scholar
  47. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33:435–446. doi:10.1080/01490419.2010.491031 CrossRefGoogle Scholar
  48. Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2013) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41(2):381–402. doi:10.1007/s00382-012-1463-4 CrossRefGoogle Scholar
  49. Pedlosky J (2006) A history of thermocline theory. In: Jochum M, Murtugudde R (eds) Physical oceanography. Springer, New York, pp 139–152CrossRefGoogle Scholar
  50. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324. doi:10.1007/s003820050284 CrossRefGoogle Scholar
  51. Rebert JP, Donguy JR, Eldin G, Wyrtki K (1985) Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J Geophys Res Oceans 90(C6):11719–11725. doi:10.1029/JC090iC06p11719 CrossRefGoogle Scholar
  52. Slangen ABA, Church JA, Zhang X, Monselesan D (2014) Detection and attribution of global mean thermosteric sea level change. Geophys Res Lett n/a–n/a, doi: 10.1002/2014GL061356
  53. Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci, 5. doi: 10.1146/annurev-marine-121211-172406
  54. Sverdrup HU (1947) Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern pacific. Proc Natl Acad Sci U S A 33(11):318–326CrossRefGoogle Scholar
  55. Swenson MS, Hansen DV (1999) Tropical Pacific Ocean mixed layer heat budget: the pacific cold tongue. J Phys Oceanogr 29(1):69–81. doi:10.1175/1520-0485(1999)029<0069:TPOMLH>2.0.CO;2 CrossRefGoogle Scholar
  56. Thompson PR, Merrifield MA, Wells JR, Chang CM (2014) Wind-driven coastal sea level variability in the northeast Pacific. J Clim 27(12):4733–4751. doi:10.1175/JCLI-D-13-00225.1 CrossRefGoogle Scholar
  57. Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific*. J. Clim., 23(16), 4429–4437, doi: 10.1175/2010JCLI3519.1
  58. Volkov DL, Larnicol G, Dorandeu J (2007) Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. Oceans 112(C6), n/a–n/a, doi: 10.1029/2006JC003765
  59. White W, Meyers G, Donguy JR, Pazan S (1985) Short-term climatic variability in the thermal structure of the Pacific Ocean during 1979–82. J Phys Oceanogr 15:917–935CrossRefGoogle Scholar
  60. Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20(24):5889–5911. doi:10.1175/2007JCLI1840.1 CrossRefGoogle Scholar
  61. Wyrtki K, Kendall R (1967) Transports of the Pacific equatorial countercurrent. J Geophys Res 72(8):2073–2076CrossRefGoogle Scholar
  62. Yang H, Wang F (2009) Revisiting the thermocline depth in the equatorial Pacific*. J. Clim., 22(13) 3856–3863. doi: 10.1175/2009JCLI2836.1
  63. Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett 39. doi: 10.1029/2012GL053240
  64. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • H. Palanisamy
    • 1
  • A. Cazenave
    • 1
  • T. Delcroix
    • 2
  • B. Meyssignac
    • 1
  1. 1.LEGOS/CNESToulouseFrance
  2. 2.LEGOS/IRDToulouseFrance

Personalised recommendations