Advertisement

Ocean Dynamics

, Volume 65, Issue 1, pp 77–92 | Cite as

The role of density gradients on tidal asymmetries in the German Bight

  • Emil V. StanevEmail author
  • Rahma Al-Nadhairi
  • Arnoldo Valle-Levinson
Article

Abstract

The dynamics of the German Bight associated with river plumes and fresh water intrusions from tidal flats have been studied with numerical simulations. The horizontal and vertical patterns of the M2, M4 and M6 tides revealed complex distortions along the bathymetric channels connecting the coast and the open sea. A major focus was on the surface-to-bottom change in tidal asymmetries, which provides a major control on draining the tidal flats around the Elbe and Weser River mouths. Comparisons between baroclinic and barotropic experiments demonstrated that the estuarine gravitational circulation is responsible for pronounced differences in surface and bottom asymmetries. These differences could be considered as a basic control mechanism for sediment dynamics. The most prominent area of tidal distortions, manifested by a delay of the tidal wave, was located between the estuarine turbidity maximum and the estuarine mouth north of Cuxhaven. This area was characterized by the strongest periodic convergence and divergence of the flow and by the largest salinity gradients. The enhancement of the gravitational circulation occurred during the transition between spring and neap tides. The large-scale dynamics and small-scale topographic features could impact the sediment distribution as there was a marked interplay in the channels between stratification and turbulence. Also an explanation has been given for the mechanisms supporting the existence of a mud area (Schlickgebiet) south of Helgoland Island, associated with trapping suspended particular matter.

Keywords

Regions of fresh water influence Overtides Estuarine circulation 

Notes

Acknowledgments

The forcing data have been provided by the German Weather Service. The bathymetric and river run-off data were provided by the Bundesamt für Seeschifffahrt und Hydrographie (BSH). Thanks are due to Joanna Staneva for making the model setup available to authors, Xi Lu and Benjamin Jacob for the plotting support and Johannes Schulz-Stellenfleth for the useful discussions. We thank the two anonymous reviewers for their comments. We acknowledge the use of Rapid Response imagery from the Land Atmosphere Near-real time Capability for EOS (LANCE) system operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA/HQ. This work has been carried out in the frame of German COSYNA project and profited largely from the EU JERICO project AVL acknowledges support from the US NSF project OCE-1332718.

References

  1. Antia E, Flemming B, Wefer G (1996) Patterns of tidal flow asymmetry on shoreface-connected ridge topography off Spiekeroog Island, German bight. Ger J Hydrogr 48:97–107Google Scholar
  2. Backhaus JO (1980) Simulation von Bewegungsvorgängen in der Deutschen Bucht. Dt Hydrogr Z Erg H B 15:56 ppGoogle Scholar
  3. Burchard H, Bolding K (2002) GETM – a general estuarine transport model. Scientific documentation, no EUR 20253 EN, European Commission, printed in Italy. 157 ppGoogle Scholar
  4. Carbajal N, Pohlmann T (2004) Comparison between measured and calculated tidal ellipses in the German Bight. Ocean Dyn 54:520–530CrossRefGoogle Scholar
  5. Egbert G, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204CrossRefGoogle Scholar
  6. Figge K (1981) Sedimentverteilung in der Deutschen Bucht. Karte Nr. 2900 mit Beiheft. Deutsches Hydrograhisches InstitutGoogle Scholar
  7. Friedrichs CT (2010) Barotropic tides in channelized estuaries. In: Valle-Levinson A (ed) Contemporary issues in estuarine physics. Cambridge University Press, Cambridge, pp 27–61CrossRefGoogle Scholar
  8. Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545CrossRefGoogle Scholar
  9. Geyer WER, MacCready P (2014) The estuarine circulation. Annu Rev Fluid Mech 46:175–97CrossRefGoogle Scholar
  10. Geyer W, Signell R (1992) A reassessment of the role of tidal dispersion in estuaries. Estuaries 15(2):97–108CrossRefGoogle Scholar
  11. Godin G (1991) Frictional effects in river tides. In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 379–402Google Scholar
  12. Groen P (1967) On the residual transport of suspended matter by an alternating tidal current. Neth J Sea Res 3(4):564–574Google Scholar
  13. Hansen DV, Rattray M (1966) New dimensions in estuary classification. Limnol Oceanogr 11:319–326CrossRefGoogle Scholar
  14. Jay DA (2010) Estuarine variability. In A. Valle-Levinson (Ed.), Contemporary issues in estuarine physics, pp. 62–99Google Scholar
  15. Jay DA, Musiak JD (1996) Internal tidal asymmetry in channel flows: origins and consequences. In C. Pattiaratchi (ed.), Mixing processes in estuaries and coastal seas, an American Geophysical Union Coastal and Estuarine Sciences Monograph, pp. 219–258Google Scholar
  16. Jay DA, Smith JD (1990) Circulation, density distribution and neap-spring transitions in the Columbia river estuary. Prog Oceanogr 25:81–112CrossRefGoogle Scholar
  17. Kappenberg J, Fanger H-U (2007) Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht und in der Nordsee. Gutachten GKSS 2007/20 des GKSS Forschungszentrums, Geesthacht GmbH, im Auftrag von Hamburg Port Authority. 125 ppGoogle Scholar
  18. Kappenberg J, Grabemann I (2001) Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries. Estuaries 24:699–706CrossRefGoogle Scholar
  19. Kappenberg J, Schymura G, Kuhn H, Fanger H-U (1996) Spring/neap variations of suspended matter concentration and transport in the turbidity maximum of the Elbe Estuary. Advances in Limnology, 47, Particulate Matter in Rivers and Estuaries, Archiv für Hydrobiologie, S. 323–332Google Scholar
  20. MacCready P (2004) Toward a unified theory of tidally-averaged estuarine salinity structure. Estuaries 27(4):561–570CrossRefGoogle Scholar
  21. Mayer B (1995) Ein dreidimensionales, numerisches schwebstoff-transportmodell mit anwendung auf die Deutsche Bucht. Tech. Rep. GKSS 95/E/59, GKSS-Forschungszentrum Geesthacht GmbHGoogle Scholar
  22. Monismith SG, Kimmerer W, Stacey MT, Burau JR (2002) Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay. J Phys Ocean 32(11):3003–3019CrossRefGoogle Scholar
  23. Nunes RA, Simpson JH (1985) Axial convergence in a well-mixed estuary. Estuar Coast Shelf Sci 20:637–49CrossRefGoogle Scholar
  24. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937CrossRefGoogle Scholar
  25. Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth J Sea Res 1:148–190Google Scholar
  26. Ridderinkhof S (1997) The effect of tidal asymmetries on the net transport of sediments in the Ems Dollard estuary. J Coast Res 25:41–48Google Scholar
  27. Rolinski S, Eichweber G (2000) Deformations of the tidal wave in the Elbe estuary and their effect on suspended particulate matter dynamics. Phys Chem Earth (B) 25(4):355–358CrossRefGoogle Scholar
  28. Staneva J, Stanev E, Wolff J, Badewien T, Reuter R, Flemming B, Bartholom€a A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29(1):302–319. doi: 10.1016/j.csr.2008.01.006
  29. Sager G (1968) Atlast der Elemente des Tiedenhubes und der Gezeitenströme für die Nordsee, den Kanal und die Irische See. 2 Aufl IX, 58S. Rostok: Seehydrographischer Dienst, DDRGoogle Scholar
  30. Simpson JH, Nunes RA (1981) The tidal intrusion front: an estuarine convergence zone. Estuar Coast Shelf Sci 13:257–266CrossRefGoogle Scholar
  31. Simpson JH, Brown J, Matthews J, Allen G (1990) Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13(2):125–132CrossRefGoogle Scholar
  32. Speer PE (1984) Tidal distortion in shallow estuaries. PhD. thesis, 924 WHOI-MIT Joint Program in Oceanography, Woods Hole, MA, 210 ppGoogle Scholar
  33. Stacey MS, Monismith G, Burau J (1999) Observations of turbulence in a partially stratified estuary. J Phys Oceanogr 29:1950–1970CrossRefGoogle Scholar
  34. Stacey MT, Brennan ML, Burau JR, Monismith SG (2010) The tidally averaged momentum balance in a partially and periodically stratified estuary. J Phys Oceanogr 40:2418–2434CrossRefGoogle Scholar
  35. Stanev EV, Floeser G, Wolff J-O (2003) First- and higher-order dynamical controls on water exchanges between tidal basins and the open ocean. A case study for the East Frisian Wadden Sea. Ocean Dyn 53:146–165CrossRefGoogle Scholar
  36. Stanev EV, Brink-Spalink G, Wolff J-O (2007a) Sediment dynamics in tidally dominated environments controlled by transport and turbulence: a case study for the East Frisian Wadden Sea. J Geophys Res 112:C04018. doi: 10.1029/2005JC003045 Google Scholar
  37. Stanev EV, Flemming BW, Bartholomä A, Staneva JV, Wolff J-O (2007b) Vertical circulation in shallow tidal inlets and back-barrier basins. Cont Shelf Res 27:798–831CrossRefGoogle Scholar
  38. Stanev EV, Schulz-Stellenfleth J, Staneva J, Grayek S, Seemann J, Petersen W (2011) Coastal observing and forecasting system for the German Bight—estimates of hydrophysical states. Ocean Sci 7:569–583CrossRefGoogle Scholar
  39. Stanev ES, AlNadhairi R, Staneva J, Schulz-Stellenfleth J, Valle-Levinson A (2014) Tidal wave transformations in the German Bight. Ocean Dyn 64:951–968CrossRefGoogle Scholar
  40. Valle-Levinson A (ed) (2010) Contemporary issues in estuarine physics. Cambridge University Press, Cambridge, p 315Google Scholar
  41. Valle-Levinson A (2011) Classification of estuarine circulation. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 1. Academic, Waltham, pp 75–86CrossRefGoogle Scholar
  42. van de Kreeke J, Robaczewska K (1993) Tide-induced residual transport of coarse sediment; application to the Ems Estuary. Neth J Sea Res 31(3):209–220CrossRefGoogle Scholar
  43. van Haren H (2003) Current spectra under varying stratification conditions in the central North Sea. J Sea Res 51(2004):77–91Google Scholar
  44. van Leeuwen SM, de Swart HE (2002) Intermediate modeling of tidal inlet: spatial asymmetries in flow and mean sediment transport. Cont Shelf Res 22:1795–1810CrossRefGoogle Scholar
  45. von Haugwitz W, Wong HK, Salge U (1988) The Mud Area southeast of Helgoland: a reflection seismic study. In: Kempe, S.; Liebezeit, G.; Dethlefsen, V.; Harms, U. (Eds.): Biogeochemistry and distribution of suspended matter in the North Sea and implications for fisheries biology. SCOPE/UNEP Sonderband, Mitt. Geol.-Paläontolog. Inst. Univ. Hamburg, 65, S. 409–422Google Scholar
  46. Winter C (2011) Macro scale morphodynamics of the German North Sea coast. J Coast Res SI 57:706–710Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emil V. Stanev
    • 1
    Email author
  • Rahma Al-Nadhairi
    • 1
  • Arnoldo Valle-Levinson
    • 2
  1. 1.Helmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.University of FloridaGainesvilleUSA

Personalised recommendations