# Deep water observations of extreme waves with moored and free GPS buoys

- 1.3k Downloads
- 7 Citations

**Part of the following topical collections:**

## Abstract

Point-positioning GPS-based wave measurements were conducted by deep ocean (over 5,000 m) surface buoys moored in the North West Pacific Ocean in 2009, 2012, and 2013. The observed surface elevation bears statistical characteristics of Gaussian, spectrally narrow ocean waves. The tail of the averaged spectrum follows the frequency to the power of −4 slope, and the significant wave height and period satisfies the Toba’s 3/2 law. The observations compare well with a numerical wave hindcast. Two large freak waves exceeding 13 m in height were observed in October 2009 and three extreme waves around 20 m in height were observed in October 2012 and in January 2013. These extreme events are associated with passages of a typhoon and a mid-latitude cyclone. Horizontal movement of the buoy revealed that the orbital motion of the waves at the peak of the wave group mostly exceed the weakly nonlinear estimate. For some cases, the orbital velocity exceeded the group velocity, which might indicate a breaking event but is not conclusive yet.

## Keywords

GPS wave sensor Deep ocean slack-moored buoy Wave hindcast Extreme waves Nonlinear wave Wave group## 1 Introduction

Observing waves in the open ocean is still a challenge. The only instrument that can map the significant wave height globally is the satellite altimeter. However, altimeters cannot detect wave direction and the observation interval is rather long. Satellite synthetic aperture radar (SAR) can provide an estimate of the directional spectrum, but it is not practical to use SAR to monitor waves regularly. For these reasons, waves are mapped globally based on numerical wave model. Therefore, altimeter and wave forecast/hindcast data ought to be validated by moored wave riders or bottom mounted wave sensors located mostly in relatively shallow waters (e.g., NDBC buoys, Swail et al. 2010, Nowphas system in Japan, Nagai et al. 2005). There are, however, a number of meteorological and tsunami monitoring buoys in deep waters such as TAO array and DART buoys. Conceivably, these buoys can be used to measure waves by monitoring the motion of the platform assuming that the buoy follows the surface. A point-positioning GPS sensor was attached to the meteorological buoy (K-TRITON) of Japan Agency for Marine-Earth Science and Technology in the North-West Pacific in 2009 and in 2012 (Waseda et al. 2011a). The advantage of the GPS wave sensor over conventional accelerometer is the ease of the analysis. The accelerometer data can be contaminated by low-frequency noise and the high-pass filter applied to remove the noise can artificially enhance the extreme wave height (Collins et al. 2014).

Extreme waves or the freak waves have been studied extensively in the past few decades. Freak waves are statistically rare waves defined as waves exceeding twice or 2.2 times the significant wave height. Extreme waves, on the other hand, may refer to freak waves, freak and giant waves, giant but not freak waves, and possibly unexpected waves. In this paper, we use the term extreme waves referring to large waves but not necessarily exceeding twice the significant wave height. The key to understanding extreme wave generation mechanism is reliable observational evidence. One of the most well studied freak wave is the Draupner Wave observed in January 1 1995 (Haver 2004). However, the wave was measured remotely by down-looking laser which might be subject to uncertainty (Magnusson et al. 2013). Gigantic waves observed in Taiwan during passage of typhoon Krosa (Liu et al. 2008) was measured by an accelerometer which might produce anomalously large wave height if not properly processed (Collins et al. 2014). Therefore, a direct measurement of extreme wave by GPS sensor might become an attractive alternative for observing extreme waves offshore. The accuracy of the measurement depends on how well the platform follows the wave motion. Tulin and Landrini (2001) documented the kinematic properties of breaking wave and showed that when the particle velocity exceeds the group velocity the waves will inevitably undergo breaking. The implication is that even the orbital velocity of non-breaking wave can reach the group velocity without undergoing severe breaking event. Extreme waves are not necessarily a breaking wave, but the horizontal motion of the particle can accelerate to reach the group velocity or it might even exceed the group velocity. To understand the ability of a tethered wave to detect extreme waves, its horizontal motion will be studied.

The principle of the GPS wave measurement and dynamic analysis of buoy motion will be outlined in Section 2. The mean wave statistics from the 2009 and 2012–2013 observations will be compared with wave model estimates in Section 3. During the total of about 12 months of observation, two freak waves around 12 m in height and three giant waves of around 20 m in height were observed. The horizontal motion of the buoy will be analyzed including these giant waves in Section 4. The kinematic properties of the nonlinear waves inferred from the observations will be discussed in the context of wave tank experiment in Section 5. Conclusions follow.

## 2 Principle of GPS-based wave observations in the deep ocean

^{1}.

The GPS longitude, latitude and altitude were recorded at 2.5 Hz for 20 min on the hour. The raw time series are recorded on storage and when an event occurs (e.g., significant wave height over 3 m), are transmitted by Iridium communication. The derived data that are processed on board are transmitted using Iridium satellite telemetry every hour. Thus the buoy motion during the observation period can be monitored by the GPS locations. When the NKEO mooring cable got cut loose in March 2013, the buoy started to drift away, and within 2 weeks, it was about 400 km apart from the original location (Fig. 1). During this time, the buoy was freely floating without a constraint of the mooring cable.

*f*

^{− 2}, and at the frequency range of typical ocean waves, the noise level is 30 dB lower than the wave energy. Thus, a simple high-pass filter with a 30-s cutoff period would work to decipher the wave signal from point-positioning GPS record.

Summary of observed wave parameters

Observation | JKEO | NKEO | NKEO/drift | |||
---|---|---|---|---|---|---|

Period | August 30, 2009–December 6, 2009 | June 20, 2012–March 8, 2013 | March 8–23, 2013 | |||

Number of records | 366 | 5,913 | 347 | |||

Remarks (sections where analyzed) | ||||||

Zero-up | Zero-down | Zero-up | Zero-down | Zero-up | Zero-down | |

Number of freak waves | 31 | 22 | 199 | 203 | 6 | 6 |

\( \overline{H_{1/3}} \) | 3.8 m | 3.8 m | 2.7 m | 2.7 m | 3.3 m | 3.3 m |

\( \overline{T_{1/3}} \) | 10.2 s | 10.2 s | 9.4 s | 9.4 s | 9.7 s | 9.7 s |

\( \overline{a{ k}_{1/3}} \) | 0.067 | 0.067 | 0.056 | 0.056 | 0.061 | 0.061 |

max | 8.4 m | 8.3 m | 13.3 m | 13.4 m | 8.1 m | 8.3 m |

max | 14.3 m | 13.2 m | 19.0 m | 22.8 m | 15.0 m | 14.0 m |

Number of records w. extreme waves of | 64 | 70 | 445 | 472 | 28 | 26 |

\( \overline{H_{1/3}} \) | 5.1 m | 4.9 m | 4.9 m | 4.9 m | 5.3 m | 5.6 m |

\( \overline{T_{1/3}} \) | 10.9 s | 10.9 s | 10.6 s | 10.7 s | 10.9 s | 11.1 s |

\( \overline{{\mathrm{ak}}_{1/3}} \) | 0.077 | 0.075 | 0.079 | 0.078 | 0.080 | 0.082 |

\( \overline{H_{\mathrm{ext}.}} \) | 8.4 m | 8.2 m | 8.2 m | 8.1 m | 8.9 m | 9.3 m |

\( \overline{T_{\mathrm{ext}.}} \) | 11.2 s | 11.2 s | 10.8 s | 10.9 s | 10.2 s | 10.6 s |

\( \overline{{\mathrm{ak}}_{\mathrm{ext}.}} \) | 0.145 | 0.141 | 0.153 | 0.148 | 0.175 | 0.168 |

\( \overline{{\left( U/{c}_p/\mathrm{ak}\right)}_{\mathrm{ext}.}} \) | 1.76 | 1.74 | 1.81 | 1.78 | 1.61 | 1.52 |

The quality of the GPS wave observation depends on the Response Amplitude Operators (RAOs) or the transfer functions of the buoy. Because of lack of data and difficulty in including the effect of cable constraint, the RAOs were numerically estimated by empirically determining the unknown buoy parameter (see Appendix 1 for detail). The natural frequency of the estimated heave motion was around 0.55 Hz but the effect was hardly detectable in the observed heave spectrum (indicated by black arrow in Fig. 3). On the other hand, a noticeable peak around 0.36 Hz appears in the spectrum of the horizontal motion (east–west or north–south), indicated by black arrow in Fig. 3, right. It turns out that the anomalous peak appears as a result of pitch or roll resonance but not because of the surge or sway resonance. The natural frequency of the roll/pitch motion of the buoy explains well the observed anomalous peak in the spectrum (Appendix 1).

Based on these analyses, the filter coefficients were determined: the cutoff frequency of the high-pass filter for the heave motion is set to 0.03 Hz; the cutoff frequencies of the band-pass filter for the pitch/roll motion are set to 0.045 and 0.28 Hz. With these filters, the bias of the stationary record reduced to about 0.01 m and the root-mean-square error to be 0.02 m, thus, successfully removing the low frequency GPS noise error. The analysis conducted in this study did not apply the RAO corrections (Sinchi 2011). The impact of RAOs was mostly negligible for our observation (Appendix 1). In the range of 0.05 to 0.2 Hz, the heave amplitude response was nearly 1 and phase shift was negligible (5° at 0.47 Hz). On the other hand, the surge response amplitude gradually decreases to around 0.93 at 0.2 Hz.

For the analysis of horizontal velocity (Section 4), further quality control was made based on the estimated Keulegan-Carpenter number (KC number hereafter). Based on the estimated horizontal velocity of the buoy *U* for the given wave, the KC number is estimated as KC = *UT*/*D* where *T* is the corresponding zero-up/down-crossing wave period and *D* is the diameter of the K-TRITON buoy (2.1 m). The threshold was set to KC = 40 which limits the analysis of the horizontal motion of the buoy to waves of length 200 m in average (Table 1). Therefore, the horizontal excursion of the buoy is assured to be sufficiently large compared to the buoy itself.

*H*

_{1/10}were compared to the ultra-sonic wave sensor data attached to the tower (Fig. 4, left). Then, the observed significant wave height,

*H*

_{1/3}, from the K-TRITON buoy was compared against

*H*

_{1/3}from the GPS drifting buoy deployed simultaneously at the JKEO site. They compared well until the drifting buoy was over 100 km away (Fig. 4, right, Waseda et al. 2011a). Therefore, the altitude observed by K-TRITON buoy seems to represent well the surface elevation. In the next section, we further validate the observed wave statistics.

## 3 Observed wave statistics and comparison with wave model

*S*(

*f*) from the elevation (or the buoy altitude) records were ensemble averaged (796 degrees of freedom). The saturation spectrum

*B*(

*f*) =

*S*(

*f*)

*f*

^{4}in the range of 0.1 to 0.3 Hz (or 3 to 10-s wave period) is nearly constant corresponding to the

*f*

^{−4}equilibrium spectral tail (e.g., Toba 1973), Fig. 5, lower left.

^{2}Consequently, the relationship between the non-dimensional significant wave height and the wave age agrees quite well with the Toba’s 3/2 law with a slight difference in the value of the constant

*B*(Fig. 5, lower right). From these comparisons, we can conclude that the free surface elevation is accurately traced by the moored K-TRITON buoy.

*H*

_{1/3}) from the 2009 JKEO and 2012–2013 NKEO observations are plotted together with hindcasted

*H*

_{ m0}in Fig. 6. JKEO

*H*

_{1/3}is compared against the hindcast significant wave height

*H*

_{ m0}of an original model and

*H*

_{ m0}of the JMA operational Coastal Wave Model (Japan Meteorological Agency/CWM, e.g., Tauchi et al. 2007). The developed hindcast model (2007–2013) based on NOAA WaveWatchIII embeds the 0.1° × 0.1° (124.9–148.1° E, 27.9–44.1° N) Japan model within the 1° × 1° Pacific model (100–290° E, −65 to 65° N); the wave direction is discretized at 10°interval and the frequency is discretized for 35 frequencies at variable intervals between 0.0412 and 1.0521 Hz. First, the reanalysis and analysis wind products (ERA-interim, NCEP-CFSR, NCEP-GFS and JMA-GSM

^{3}) were validated against observed wind records (NDBC buoys, TAO-TRITON buoys, Nowphas buoys and JKEO buoys

^{4}), and then the Pacific wave model outputs forced by these winds were validated against the observed wave records (NDBC buoys, Nowphas buoys and JKEO buoy); the bias tended to be smallest with ERA-interim wind but the correlation was highest with JMA-GSM wind near Japan. Eventually, JMA-GSM was chosen to force the Pacific model and JMA-MSM was chosen to force the Japan model (Waseda et al. 2014). The hindcasted wave height compares well with the observations (Fig. 6), except at extreme events when the model tends to underestimate the

*H*

_{s}. The JKEO observation was compared against CWM estimates as well. The resolution of CWM is 0.05° around Japan (120–150° E, 20–50° N) and 72-h wave forecast was available. The time series of the significant wave heights among wave products compares reasonably well. The standard deviation (around 1 m), the centered root-mean-square differences and the correlation (around 0.95) are depicted in the Taylor diagram (Fig. 7). The centered root-mean-square difference is larger and the correlation is lower between CWM and the observation (point C in Fig. 7, left) than our simulation and the observation (point B in Fig. 7, left). The model was validated against NKEO observation as well (Fig. 7, right). The correlation is slightly smaller (0.90) than JKEO, and both the standard deviation (around 1.2 m) and centered rms difference are slightly larger than JKEO case, because of seasonal variation. Overall, we conclude that both the JKEO and NKEO wave observations compare reasonably well with the Hindcast simulations.

## 4 Buoy trajectories and inferred orbital motions of extreme waves in a wave group

*H*

_{1/3}= 5.8 m) and 13.2 m wave height (

*H*

_{1/3}= 6.6), respectively. These two freak waves have distinct directional characteristics, former being narrow and latter being broad (e.g., Waseda et al. 2011b). On October 4, 2012, extreme waves of 22.8-m wave height (

*H*

_{1/3}= 13.4), and 17.3-m wave height (

*H*

_{1/3}= 10.3) were observed during passage of typhoon 19. And on January 14, 2013, an extreme wave height 17.7 m (

*H*

_{1/3}= 10.0) was observed during passage of a bomb cyclone. These waves were not freak waves. The buoy trajectory of the largest waves observed by the K-TRITON buoy (22.8 m on October 4, 2012) will be studied in more detail.

*H*

_{1/3}= 10.3) case which was observed just an hour later (01:00 October 4, 2012 [UTC]), the maximum horizontal speed was much smaller (4.8 m/s), Fig. 10. Nevertheless, because the steepness, ak, of the corresponding wave is around 0.17, the estimated horizontal speed exceeds that of the weakly non-linear wave

*U*= (ak)

*C*

_{ p }where ak = 0.2.

^{5}. Because the horizontal excursion of the buoy tends to exceed the wave height (upper left), the horizontal speed must be higher than the weakly non-linear orbital speed

*U*= (

*ak*)

*C*

_{ p }, where

*ak*is derived from individual wave height and period. The maximum horizontal speed was estimated from the buoy motion removing the slow translation speed due to current and wind (Fig. 11, upper right). The data does not show any indication of the wave height limiting the horizontal speed, hence assuring that the buoy motion is not constrained by the mooring cable. For each individual wave, the zero-crossing period is used to estimate the phase velocity. The maximum horizontal speed normalized by the phase speed

*U*/

*C*

_{ p }is mostly below 0.4, but was quite scattered and reached as high as 1 (Fig. 11, lower left). The

*U*/

*C*

_{ p }equals the steepness

*ak*, according to weakly non-linear theory. Hence the exceedance of

*U*/

*C*

_{ p }to

*ak*represents the degree of nonlinearity of the wave. The ratio

*U*/

*C*

_{ p }/

*ak*ranges mostly below 3 but at times can reach almost 5 (Fig. 11, lower right). The peak of the distribution is slightly over 1 and therefore considerable amount of waves are nonlinear but not necessarily breaking since

*U*/

*C*

_{ p }is less than 0.5. The average value of

*U*/

*C*

_{ p }/

*ak*was around 1.78 for the mean wave period of around 11 s. The steepness of these extreme waves were in average around 0.147, see Table 1. Because the significant steepness was around 0.078, occurrence probability of freak wave is considered to be normal. Thus, the current analysis indicates that the particle speed of extreme waves in a group, but not necessarily statistically rare, exceeds the weakly non-linear estimate of the orbital speed.

*U*/

*C*

_{ p }/

*ak*and the abnormality index AI =

*H*

_{max}/

*H*

_{1/3}(Fig. 12, lower right), are consistent with the earlier analysis of data obtained when the buoy was moored. Since the number of data is significantly lower than the tethered case, the distribution at high values of

*U*/

*C*

_{ p }is sparse.

The tethered and untethered buoy records gave us a unique opportunity to evaluate the influence of mooring cable to the motion of the buoy in Deep Ocean. The comparison showed that the buoy motion is not constrained by the mooring cable. Dynamic analysis of the mooring system is necessary to assure this conclusion. We have conducted a preliminary computation with a finite element model but it was difficult because of the elasticity of the cable and possible loss of cable tension which made the system numerically unstable. An alternative method, if cable curvature is small, is to use a lamped-mass mooring cable model which is more stable.

## 5 Discussion

When waves break, the speed of the particle at the crest accelerates to *U* = *O*(*C* _{ p }). As a result, the fluid particle orbit completely opens. Tulin and Landrini (2001) showed numerically that even if the waves are not breaking, the particle at the peak of a wave group accelerates. The fluid particle motion was visualized in a small wind-wave flume (10.0 m long, 60 cm wide, and 80 cm deep) at the University of Tokyo, Kashiwa Campus by tracking a marker floating on the free surface (Takahashi 2012). The float is a 5.8-mm-diameter polystyrene sphere of specific gravity 0.98. The images were taken 24 frames per second and the maker float was tracked digitally. The Stokes drift of a 1-m-long regular wave was estimated with an error of less than 1 %.

*U*

_{observed}> (

*A*(

*x*,

*t*)

*k*)

_{local}

*C*

_{ p }). The observed maximum wave amplitudes

*a*

_{max}reached about twice the initial wave amplitudes

*a*

_{0}but were less than \( \left(1+\sqrt{2}\right){a}_0 \) corresponding to the analytical solution of NLS (Akhmediev et al. 1987) (figure not shown). Therefore, the tank experiment indicates that the particle velocity can reach a much higher value than that estimated from the local wave amplitude.

Because the experiment was conducted following a single float, it was unlikely to have recorded the largest particle speeds which can approach the phase speed. Likewise, the K-TRITON buoy would have likely missed observing the largest speed of the propagating waves. Nevertheless, the observed normalized horizontal speed of the buoy *U*/*C* _{ p } reached as high as 4 to 5 times the wave steepness (ak)_{local} (Fig. 11, lower right), which corresponds to maximum horizontal speed around 60 to 80 % of the phase speed. According to Tulin and Landrini (2001), waves whose particle velocity exceeded the group speed should undergo breaking. It is likely that the K-TRITON buoy had encountered a number of breaking waves. Whether the freak waves necessarily break or not is an open question. From our observations, a large population of data for the freak waves (e.g., *H* _{max}/*H* _{s} > 2) are distributed around *U* _{max}/*C* _{ p }/(ak)_{max} = 1.0-2.0. Therefore, the observed freak waves were most likely not breaking.

## 6 Conclusion

A GPS sensor was attached to a slack-moored oceanographic/meteorological buoy in the North West Pacific near Japan at a depth 5,000 m. The buoy was not originally designed to measure ocean waves, but through data analysis and comparison with wave hindcast model, the buoy motion was proven to represent orbital motion of the ocean waves. In addition to the surface elevation, special attention was paid to the horizontal motion of the buoy. Conventional Eulerian observation by fixed sensors cannot measure the Lagrangian motion of the water particle. This study demonstrated the usefulness of Lagrangian wave observations based on GPS positioning of a moored, surface following buoy. By analyzing the highest waves in each 20-min records, we have shown that the fluid particle speed can accelerate at the peak of the wave group and far exceed the phase speed estimated by weakly nonlinear theory. The maximum wave height observed was 22 m and the associated horizontal speed was about 12 m/s. In the last few decades, freak waves have been studied extensively from a statistical point of view and the community seemed to have reached to a consensus on the significance of weak nonlinearity. However, what the sea farers care about is whether freak waves are dangerous “monster wave” or not. Whether such waves can be a threat to ships navigating in seas or offshore platforms wait for further research. This study demonstrated the usefulness of Lagrangian wave observation based on GPS positioning of tethered buoy.

## Footnotes

- 1.
- 2.
The slight reduction of B(

*f*) at 0.35 Hz and increase at 0.45 Hz do not correspond to heave or pitch/roll resonance frequencies and are overly emphasized compared to the spectral shape shown in Fig. 3. The drop off beyond 0.5 Hz cannot be explained by the heave RAO. Thus, these characteristics most likely represent the true wave signal. - 3.
- 4.
NDBC: National Data Buoy Center (Meindl and Hamilton 1992)

TAO: Tropical Atmosphere Ocean (McPhaden et al. 2010)

TRITON: Triangle Trans-Ocean Buoy Network (Kuroda and Amitani 2001)

Nowphas: Nationwide Ocean Wave information network for Ports and HArbourS (Nagai et al. 2005)

JKEO: Japan Kuroshio Extention Observatory (Tomita et al. 2010)

- 5.
For a typical laboratory particle tracking velocimetry, the KC number is over 100. The threshold value of KC number was set to 40 so as not to exclude too many data points for the analysis.

## Notes

### Acknowledgements

The first author acknowledges H. Tomita, A. Nagano, and K. Taniguchi of JAMSTEC for their assistance in conducting the K-TRITON buoy observation. He also acknowledges S. Komori and H. Yoshida of Zeni Lite Buoy Co. for their assistance in setting up the GPS wave sensor. The research was supported by Grant-in-Aid for Scientific Research. WAFO (2000) was used in the analysis.

## References

- Akhmediev NN, Eleonskii VM, Kulagin NE (1987) Exact first-order solutions of the nonlinear Schrödinger equation. Theor Math Phys 72(2):809–818CrossRefGoogle Scholar
- Cartwright DE, Longuet-Higgins MS (1956) The statistical distribution of the maxima of a random function. Proc Roy Soc London Series A 237:212–232CrossRefGoogle Scholar
- Collins CO III, Lund B, Waseda T, Graber HC (2014) On recording sea surface elevation with accelerometer buoys: lessons from ITOP (2010). Ocean Dyn 64(6):895–904CrossRefGoogle Scholar
- Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, …, Vitart F (2011) The ERA Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656), 553–597Google Scholar
- Donelan M, Longuet-Higgins MS, Turner JS (1972) Periodicity in whitecaps. Nature 239:449–451Google Scholar
- Haver S (2004) A possible freak wave event measured at the Draupner jacket January 1 1995. Proc. Rogue Waves 2004Google Scholar
- Ishihara Y, Yamaguchi M, Fukuda T, Matsunaga H, Murashima T (2010) m-TRITON and TRITON buoy system, Tropical Moored Buoy Implementation Panel—10, Scotland, 26 September, http://www.pmel.noaa.gov/tao/proj_over/tip/tip10_presentations.html
- Kuroda Y, Amitani Y (2001) TRITON: new ocean and atmosphere observing buoy network for monitoring ENSO. Umi no Kenkyu 10:157–172 (in Japanese with English abstract)Google Scholar
- Liu PC, Chen HS, Doong DJ, Kao CC, Hsu YJG (2008) Monstrous ocean waves during typhoon Krosa. Ann Geophys 26:1327–1329CrossRefGoogle Scholar
- Magnusson AK, MET-Norway B, Meteorology M (2013) Variability of sea state measurements and sensor dependence, Workshop: Statistical models of the Metocean environment for engineering uses, IFREMER 30.09-01.10.2013Google Scholar
- McPhaden M, Busalacchi AJ, Anderson DLT (2010) A TOGA Retrospective. Oceanography 23(3):86–103. doi: 10.5670/oceanog.2010.26 CrossRefGoogle Scholar
- Meindl EA, Hamilton GD (1992) Programs of the National Data Buoy Center. Bull Am Meteorol Soc 73(7):985–993CrossRefGoogle Scholar
- Mizuta R, Oouchi K, Yoshimura H, Noda A, Katayama K, Yukimoto S, …, Nakagawa M (2006) 20-km-mesh global climate simulations using JMA-GSM model—mean climate states. Journal of the Meteorological Society of Japan, vol 84(1), 165–185Google Scholar
- Nagai T, Satomi S, Terada Y, Kato T, Nukada K, Kudaka M (2005, June) GPS buoy and seabed installed wave gauge application to offshore tsunami observation. In Proceedings of the Fifteenth International Offshore and Polar Engineering Conference (pp 292–299)Google Scholar
- NCEP Office Note 442 (2003) The GFS Atmospheric Model, 14., www.weather.gov/ost/climate/STIP/AGFS_DOC_1103.pdf
- Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, …, Reynolds RW (2010) The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1057Google Scholar
- Sinchi M (2011) Data analysis of the ocean wave observation for solving the generation mechanism of freak wave, Master’s thesis, the University of Tokyo, Graduate School of Frontier Sciences (in Japanese)Google Scholar
- Swail V, Jensen R, Lee B, Turton J, Thomas J, Gulev S, Yelland M, Etala P, Meldrum D, Birkemeier W, Burnett W, Warren G (2010) Wave measurements, needs and developments for the next decade. Proceedings of the OceanObs, ‘09Google Scholar
- Takahashi S, (2012) Particle motions of nonlinear water waves, Master’s thesis, the University of Tokyo, Graduate School of Frontier Sciences (in Japanese)Google Scholar
- Tauchi T, Kohno N, Kimura M (2007) The improvement of JMA operational wave models, ftp://ftp.wmo.int/Documents/PublicWeb/amp/mmop/documents/JCOMM-TR/J-TR-44/WWW/Papers/Full_WaveW2007Tauchi.pdf
- Toba Y (1973) Local balance in the air-sea boundary processes. J Oceanographical Soc Japan 29(5):209–220CrossRefGoogle Scholar
- Tomita H, Kubota M, Cronin MF, Iwasaki S, Konda M, Ichikawa H (2010) An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites, J Geophys Res -Oceans 115:C03018, 10.1029/2009jc005545.
- Trulsen K, Dysthe KB (1990) Frequency down-shift through self modulation and breaking. In Water Wave Kinematics (pp 561–572). Springer NetherlandsGoogle Scholar
- Tulin MP, Landrini M (2001) Breaking waves in the ocean and around ships. In Twenty-Third Symposium on Naval HydrodynamicsGoogle Scholar
- Tulin MP, Waseda T (1999) Laboratory observations of wave group evolution, including breaking effects. J Fluid Mech 378:197–232CrossRefGoogle Scholar
- WAFO-group (2000) “WAFO—A Matlab Toolbox for Analysis of Random Waves and Loads—A Tutorial” Math. Stat., Center for Math. Sci., Lund Univ., Lund, Sweden. ISBN XXXX, URL http://www.maths.lth.se/matstat/wafo
- Waseda T, Sinchi M, Nishida T, Tamura H, Miyazawa Y, Kawai Y, Ichikawa H, Tomita H, Nagano A, Taniguchi K (2011a) GPS-based wave observation using a moored oceanographic buoy in the deep ocean, Proceedings, June, ISOPE-MauiGoogle Scholar
- Waseda T, Hallerstig M, Ozaki K, Tomita H (2011b) Enhanced freak wave occurrence with narrow directional spectrum in the North Sea. Geophys Res Lett 38, L13605. doi: 10.1029/2011GL047779 CrossRefGoogle Scholar
- Waseda T, Asaumi S, Kiyomatsu K (2014) Improving resource assessment of wave power based on spectral wave model, OMAE 2014, June 9–13, San Francisco, USAGoogle Scholar
- Yamaguchi I, Kasai T, Igawa H, Harigae M, Komori S, Shigenaga T, Hosaka Y (2005) Ocean wave sensing system using point-positioning GPS receiver, Space Engineering Conference, 14, 29–34, 2005-12-15Google Scholar

## Copyright information

**Open Access** This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.