Advertisement

Ocean Dynamics

, Volume 64, Issue 9, pp 1333–1348 | Cite as

Influence of the back-barrier basin length on the geometry of ebb-tidal deltas

  • Wim Ridderinkhof
  • Huib E. de Swart
  • Maarten van der Vegt
  • Piet Hoekstra
Article
Part of the following topical collections:
  1. Topical Collection on Physics of Estuaries and Coastal Seas 2012

Abstract

The characteristics of ebb-tidal deltas are determined by the local hydrodynamics. The latter depend, among others, on the geometry of the adjacent back-barrier basin. Therefore, interventions in the back-barrier basin can affect the geometry of ebb-tidal deltas. In this study, the effect of the length of the back-barrier basin on the sand volume and spatial symmetry of ebb-tidal deltas is quantified with the use of a numerical model. It is found that the length of the back-barrier basin affects the tidal prism, the amplitude and phase of the primary tide and its overtides, and the residual currents that, together, determine the sand volume of the ebb-tidal delta. In particular, it is found that no unique relationship exists between tidal prism and sand volume of an ebb-tidal delta. The spatial symmetry of ebb-tidal deltas is also found to be affected by the length of the back-barrier basin. This is because the basin length determines the phase difference between alongshore and cross-shore tidal currents. The numerical model results give a possible explanation for the changes that are observed in the geometry of the ebb-tidal deltas that are located seaward of the Texel Inlet and Vlie Inlet after the closure of the Zuiderzee.

Keywords

Tidal basin Wadden Sea Texel inlet Vlie inlet Numerical model Morphodynamics Sediment transport Delft3D Tidal asymmetry Tidal resonance Zuiderzee 

Notes

Acknowledgments

We are grateful to Rijkswaterstaat for making their bathymetric data publicly accessible (available through opendap.deltares.nl). Fig. 1e was produced with use of Open Earth Tools. This research was funded by the Netherlands Organization for Scientific Research (NWO), project number: BN000295.

References

  1. Aubrey DG (1986) Physics of shallow estuaries and bays, Lecture notes on coastal and estuarine studies, vol 16, AGU, chap Hydrodynamic controls on sediment transport in well-mixed bays and estuaries, pp 245–258Google Scholar
  2. Biegel E, Hoekstra P (1995) Morphological response characteristics of the Zoutkamperlaag. Blackwell Publishing Ltd, Frisian inlet (The Netherlands) to a sudden reduction in basin area, in Tidal Signatures in Modern and Ancient SedimentsGoogle Scholar
  3. Buijsman MC, Ridderinkhof H (2007) Long-term ferry-adcp observations of tidal currents in the marsdiep inlet. J Sea Res 57(4):237–256. doi: 10.1016/j.seares.2006.11.004 CrossRefGoogle Scholar
  4. Cayocca F (2001) Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France. Coast Eng 42(2):115–142. doi: 10.1016/S0378-3839(00)00053-3 CrossRefGoogle Scholar
  5. Davis RA, Fitzgerald DM (2004) Beaches and coasts. Blackwell Science LtdGoogle Scholar
  6. De Swart HE, Zimmerman JTF (2009) Morphodynamics of tidal inlet systems. Ann Rev Fluid Mech 41(1):203–229. doi: 10.1146/annurev.fluid.010908.165159 CrossRefGoogle Scholar
  7. Dissanayake DMPK, Roelvink JA, van der Wegen M (2009) Modelled channel patterns in a schematized tidal inlet. Coast Eng 56(11–12):1069–1083. doi: 10.1016/j.coastaleng.2009.08.008 CrossRefGoogle Scholar
  8. Dissanayake DMPK, Ranasinghe R, Roelvink J (2012) The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim Chang 113:253–276. doi: 10.1007/s10584-012-0402-z CrossRefGoogle Scholar
  9. Elias E, Van der Spek AJF, Wang ZB, De Ronde J (2012) Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Neth J Geosci - Geologie en Mijnbouw 91(3):293–310Google Scholar
  10. Elias EPL, Stive MJF, Roelvink JA (2005) Impact of back-barrier changes on ebb-tidal delta evolution. J Coastal Res SI 42:460–476Google Scholar
  11. Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial channels. Teknik Forlag, CopenhagenGoogle Scholar
  12. Escoffier FF (1940) The stability of tidal inlets. Shore and Beach:114–115Google Scholar
  13. Gibeaut JC, Davis RA (1993) Statistical geomorphic classification of ebb-tidal delta along the west-central Florida coast. J Coastal Res S1(18):165–184Google Scholar
  14. Hayes MO (1975) Estuarine Research, vol II, chap Morphology of sand accumulation in estuaries: An introduction to the symposium. Academic Press, New York, pp 3–22Google Scholar
  15. Hayes MO (1980) General morphology and sediment patterns in tidal inlets. Sediment Geol 26:139–156CrossRefGoogle Scholar
  16. van Leeuwen SM, van der Vegt M, de Swart HE (2003) Morphodynamics of ebb-tidal deltas: a model approach. Estuarine. Coast Shelf Sci 57(5–6):899–907. doi: 10.1016/S0272-7714(02)00420-1 CrossRefGoogle Scholar
  17. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8–9):883–915. doi: 10.1016/j.coastaleng.2004.07.014 CrossRefGoogle Scholar
  18. Lorentz HA (1926) Verslag Staatscommissie Zuiderzee 1918-1926. Algemeene Landsdrukkerij,’s GravenhageGoogle Scholar
  19. Nahon A, Bertin X, Fortunato AB, Oliveira A (2012) Process-based 2dh morphodynamic modeling of tidal inlets: a comparison with empirical classifications and theories. Mar Geol 291:1–11. doi: 10.1016/j.margeo.2011.10.001 CrossRefGoogle Scholar
  20. Oertel GF (1975) Estuarine Research, vol II. Academic Press, New York, chap Ebb-Tidal Deltas of Georgia Estuaries, pp 267–276Google Scholar
  21. Oertel GF (1988) Hydrodynamics and Sediment Dynamics of Tidal Inlets., vol 29, chap Processes of sediment exchange between tidal inlets, ebb deltas and barrier islands, pp. 297–318. Springer-VerlagGoogle Scholar
  22. Oost AP, de Boer PL (1994) Sedimentology and development of barrier islands, ebb-tidal deltas, inlets and backbarrier areas of the dutch waddensea. Senckenb Marit 24:65–115Google Scholar
  23. Powell MA, Thieke RJ, Mehta AJ (2006) Morphdynamic relationships for ebb and flood delta volumes at Florida’s tidal entrances. Ocean Dyn 56:295–307. doi: 10.1007/s10236-006-0064-3 CrossRefGoogle Scholar
  24. van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua PublicationsGoogle Scholar
  25. van Rijn L C (2007) Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. J Hydraul Eng 133(6):649–667. doi: 10.1061/(ASCE)0733-9429 CrossRefGoogle Scholar
  26. Roelvink J A (2006) Coastal morphodynamic evolution techniques. Coast Eng 53(2–3):277–287. doi: 10.1016/j.coastaleng.2005.10.015 CrossRefGoogle Scholar
  27. Sha LP (1989) Sand transport patterns in the ebb-tidal delta off Texel inlet, Wadden Sea, the Netherlands. Mar Geol 86:137–154CrossRefGoogle Scholar
  28. Sha LP, Van den Berg JH (1993) Variation in ebb-tidal delta geometry along the coast of the Netherlands and the German Bight. J Coast Res 9(3):730–746Google Scholar
  29. Speer PE, Aubrey DG (1985) A study of non-linear tidal propagation in shallow inlet/estuarine systems part II: Theory. Estuarine. Coast Shelf Sci 21(2):207–224. doi: 10.1016/0272-7714(85)90097-6 CrossRefGoogle Scholar
  30. van Veen J (1936) Onderzoekingen in de hoofden. Algemeene Landsdrukkerij, ’s GravenhageGoogle Scholar
  31. van der Vegt M, Schuttelaars H M, de Swart H E (2009) The influence of tidal currents on the asymmetry of tide-dominated ebb–tidal deltas. Cont Shelf Res 29(1):159–174. doi: 10.1016/j.csr.2008.01.018 CrossRefGoogle Scholar
  32. Walton TL, Adams WD (1976) Capacity of inlet outer bars to store sand. Coast Eng:1919–1937Google Scholar
  33. Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, De Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manag 68:39–57. doi: 10.1016/j.ocecoaman.2011.12.022 CrossRefGoogle Scholar
  34. van der Wegen M, Roelvink JA (2008) Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J Geophys Res 113(C3):C03,016. doi: 10.1029/2006JC003983 Google Scholar
  35. Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34(10):1284–1306. doi: 10.1016/j.cageo.2008.02.012 CrossRefGoogle Scholar
  36. Zimmerman JTF (1992) On the Lorentz linearization of a nonlinearly damped tidal Helmholtz oscillator. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 95(1):127–145Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wim Ridderinkhof
    • 1
  • Huib E. de Swart
    • 1
  • Maarten van der Vegt
    • 1
  • Piet Hoekstra
    • 1
  1. 1.IMAU Utrecht UniversityUtrechtNetherlands

Personalised recommendations