Ocean Dynamics

, Volume 64, Issue 8, pp 1093–1120 | Cite as

Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution?

  • Adam T. Devlin
  • David A. Jay
  • Stefan A. Talke
  • Edward Zaron
Article

Abstract

This study examines connections between mean sea level (MSL) variability and diurnal and semidiurnal tidal constituent variations at 17 open-ocean and 9 continental shelf tide gauges in the western tropical Pacific Ocean, a region showing anomalous rise in MSL over the last 20 years and strong interannual variability. Detrended MSL fluctuations are correlated with detrended tidal amplitude and phase fluctuations, defined as tidal anomaly trends (TATs), to quantify the response of tidal properties to MSL variation. About 20 significant amplitude and phase TATs are found for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). Lesser constituents (O1 and S2) show trends at nearly half of all gauges. Fluctuations in MSL shift amplitudes and phases; both positive and negative responses occur. Changing overtides suggest that TATs are influenced by changing shallow water friction over the equatorial Western Pacific and the eastern coast of Australia (especially near the Great Barrier Reef). There is a strong connection between semidiurnal TATs at stations around the Solomon Islands and changes in thermocline depth, overtide generation, and the El Niño Southern Oscillation (ENSO). TATs for O1, K1, and M2 are related to each other in a manner that suggests transfer of energy from M2 to the two diurnals via resonant triad interactions; these cause major tidal variability on sub-decadal time scales, especially for M2. The response of tides to MSL variability is not only spatially complex, it is frequency dependent; therefore, short-term responses may not predict long-term behavior.

Keywords

Astronomical tides Western tropical pacific Sea level variability Tidal anomaly trends Climate change Resonant triads 

Notes

Acknowledgements

Support for this project was provided by the National Science Foundation (NSF) project: Secular Changes in Pacific Tides, OCE-0929055, and by the National Aeronautics and Space Administration (NASA) project: NNX13AH06G. Thanks to Land Information New Zealand (LINZ) and Glen Rowe who provided data for Auckland after extended personal communication.

Supplementary material

10236_2014_741_MOESM1_ESM.pdf (4.4 mb)
ESM 1(PDF 4513 kb)

References

  1. Amin M (1983) On Perturbations of harmonic constants in the Thames Estuary, Geophysical Journal of the Royal Astronomical Society, 75:587–603. doi:10.1111/j.1365-246X.1983.tb03334
  2. Arbic BK (2005) Atmospheric forcing of the oceanic semidiurnal tide. Geophys Res Lett 32, L02610. doi:10.1029/2004GL021668 CrossRefGoogle Scholar
  3. Arbic BK, Garrett C (2010) A coupled oscillator model of shelf and ocean tides. Cont Shelf Res 30(6):564–574. doi:10.1016/j.csr.2009.07.008 CrossRefGoogle Scholar
  4. Arbic BK, Karsten RH, Garrett C (2009) On tidal resonance in the global ocean and the back-effect of coastal tides upon open-ocean tides. Atmosphere-Ocean 47(4):239–266. doi:10.3137/OC311.2009 CrossRefGoogle Scholar
  5. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS (1962) Interactions between light waves in a nonlinear dielectric. Phys Rev 127:1918–1939. doi:10.1103/PhysRev.127.1918 CrossRefGoogle Scholar
  6. Ball FK (1964) Energy transfer between external and internal gravity waves. J Fluid Mech 20:465–478. doi:10.1017/S0022112064001550 CrossRefGoogle Scholar
  7. Bretherton FP (1964) Resonant interactions between waves. J Fluid Mech 20:457–479. doi:10.1017/S0022112064001355 CrossRefGoogle Scholar
  8. Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res 116, CO7005. doi:10.1029/2010JC006759 CrossRefGoogle Scholar
  9. Carter GS, Gregg MC (2006) Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J Phys Oceanogr 36(6):1136–1147. doi:10.1175/JPO2884.1 CrossRefGoogle Scholar
  10. Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys Res Lett 33:253–264. doi:10.1111/j.1365-246X.1973.tb03420.x Google Scholar
  11. Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J R Astron Soc 23:45–74. doi:10.1111/j.1365-246X.1971.tb01803.x CrossRefGoogle Scholar
  12. Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42, RG3001. doi:10.1029/2003RG000139, 1–20CrossRefGoogle Scholar
  13. Chiswell SM (1994) Vertical structure of the baroclinic tides in the central North Pacific subtropical gyre. J Phys Oceanogr 24:2032–2039. doi:10.1175/1520-0485(1994)24[2032:VSOTBT]2.0.CO;2 CrossRefGoogle Scholar
  14. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33, L01602. doi:10.1029/2005GL024826 CrossRefGoogle Scholar
  15. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys. doi:10.1007/s10712-011-9119-1 Google Scholar
  16. Church JA, White NJ, Coleman R, Layback K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Clim 17:2609–2625. doi:10.1175/1520-0442(2004) CrossRefGoogle Scholar
  17. Church JA, Roemmich D, Domingues CM, Willis JK, White NJ, Gilson JE, Stammer D, Köhl A, Chambers DP, Landerer FW, Marotzke J, Gregory JM, Tatsuo Suzuki, Cazenave A, Le Traon P-Y (2011) Ocean temperature and salinity contributions to global and regional sea-level change. In: Understanding sea-level rise and variability. Wiley-Blackwell, Oxford, pp 143–176, doi:10.1029/2007EO040008
  18. Colossi JA, Munk W (2006) Tales of the venerable Honolulu tide gauge. J Phys Oceanogr 36:967–996. doi:10.1175/JPO2876.1 CrossRefGoogle Scholar
  19. Craik ADD (1985) Wave interactions and fluid flows. Cambridge Univ. Press, Cambridge, U. K, ISBN: 978-0521368292Google Scholar
  20. Domingues CM, Church JA, White NJ, Glecker PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1094. doi:10.1038/nature07080 CrossRefGoogle Scholar
  21. Dushaw BD, Cornuelle BD, Worcester PF, Howe BM, Luther DS (1995) Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys Oceangr 25:631–647. doi:10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2 CrossRefGoogle Scholar
  22. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of Barotropic Ocean tides. J Atmos Ocean Technol 19(2):183–204. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  23. Egbert GD, Erofeeva SY (2010) OTIS (OSU Tidal Inversion Software) TPXO7.2. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, http://volkov.oce.orst.edu/tides/otis.html
  24. Flick RE, Murray JF, Ewing LC (2003) Trends in United States tidal datum statistics and tide range. J Waterw Port Coast Ocean Eng Am Soc Civil Eng 129(4):155–164. doi:10.1061/~ASCE10733-950X~20031129:4~1551 CrossRefGoogle Scholar
  25. Frelich MH, Guza RT (1984) Nonlinear effects on shoaling surface gravity waves, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 311(1515):1–41. doi:10.1029/JC095iC06p09645
  26. Gerkema T, Staquet C, Bouruet-Aubertot P (2006) Decay of semidiurnal internal-tide beams due to subharmonic resonance. Geophys Res Lett 33, L08604. doi:10.1029/2005GL025105 Google Scholar
  27. Gill AE (1982) Atmosphere–ocean dynamics (vol. 30). Academic press, ISBN: 978-0122835223Google Scholar
  28. Godin G (1986) Is the abnormal response of the tide at the frequency of S2 really due to radiational effects?, Continental Shelf Research, 6(5)615-625. doi:10.1016/0278-4343(86)90026-9
  29. Haigh I, Nicholls R, Wells N (2010) Assessing changes in extreme sea levels: applications to the English Channel, 1900–2006. Cont Shelf Res 30:1042–1055. doi:10.1016/j.csr.2010.02.002 CrossRefGoogle Scholar
  30. Hamlington BD, Leben RR, Nerem RS, Han W, Kim KY (2011) Reconstructing sea level using cyclostationary empirical orthogonal functions. J Geophys Res 116, C12015. doi:10.1029/2011JC007529 CrossRefGoogle Scholar
  31. Hibiya T, Nagasawa M, Niwa Y (2002) Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J Geophys Res 107(C11):3207. doi:10.1029/2001JC001210 CrossRefGoogle Scholar
  32. Horsburgh KL, Wilson C (2007) Tide–surge interaction and its role in the distribution of surge residuals in the North Sea. J Geophys Res 112, CO8003. doi:10.1029/2006JC004033 CrossRefGoogle Scholar
  33. Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: method and its application to geophysical studies. Rev Geophys 46, RG2006. doi:10.1029/2007RG000228, 1–23CrossRefGoogle Scholar
  34. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time-series analysis. Proc R Soc Lond A 454:903–995. doi:10.1098/rspa.1998.0193 CrossRefGoogle Scholar
  35. Huber PJ (1981) Robust statistics. John Wiley & Sons, Inc, Hoboken. doi:10.1137/1.9781611970036.fm CrossRefGoogle Scholar
  36. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929. doi:10.1126/science.1085046 CrossRefGoogle Scholar
  37. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:11. doi:10.1016/j.tree.2010.07.011 Google Scholar
  38. Jay DA (2009) Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys Res Lett 36, L04603. doi:10.1029/2008GL036185 CrossRefGoogle Scholar
  39. Jay DA, Leffler K, Degens S (2011) Long-term evolution of Columbia River tides. ASCE J Waterw Port Coast Ocean Eng 137:182–191. doi:10.1061/(ASCE)WW.1943- 5460.0000082 CrossRefGoogle Scholar
  40. Kaup DJ (1980) A method for solving the separable initial value problem of the full three dimensional three-wave interaction. Stud Appl Math 62:75–83Google Scholar
  41. Kohl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37:313–337. doi:10.1175/JPO3014.1 CrossRefGoogle Scholar
  42. Kukulka T, Jay DA (2003) Impacts of Columbia River discharge on salmonid habitat II. Changes in shallow-water habitat. J Geophys Res 108:3294CrossRefGoogle Scholar
  43. Lamb KG (2007) Tidally generated near-resonant internal wave triads at a shelf break. Geophys Res Lett 34, L18607. doi:10.1029/2007GL030825 CrossRefGoogle Scholar
  44. Leffler KE, Jay DA (2009) Enhancing tidal harmonic analysis: robust solutions. Cont Shelf Res 29(1):78–88. doi:10.1016/j.csr.2008.04.011 CrossRefGoogle Scholar
  45. Legg S, Klymak J (2008) Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J Phys Oceangr 38:1949–1964CrossRefGoogle Scholar
  46. Lelong MP, Kunze E (2013) Can barotropic tide–eddy interactions excite internal waves? J Fluid Mech 721:1–27. doi:10.1017/jfm.2013.1 CrossRefGoogle Scholar
  47. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) NOAA Atlas NESDIS 67. U.S. Gov. Printing Office, Washington, 184 ppGoogle Scholar
  48. Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a 1/48 global ocean/sea-ice hindcast. Ocean Dyn 59:433–449. doi:10.1007/s10236-008-0161-6 CrossRefGoogle Scholar
  49. MacKinnon JA, Winters KB (2005) Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9N. Geophys Res Lett 2, L15605CrossRefGoogle Scholar
  50. Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24:4126–4138. doi:10.1175/2011JCLI3932.1 CrossRefGoogle Scholar
  51. Millero FJ, Rainer F, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res Part I 55(1):50–72. doi:10.1016/j.dsr.2007.10.001 CrossRefGoogle Scholar
  52. Mitchum GT, Chiswell SM (2000) Coherence of internal tide modulations along the Hawaiian ridge. J Geophys Res 105(C12):28653–28661. doi:10.1029/2000JC900140 CrossRefGoogle Scholar
  53. Müller M (2012) The influence of changing stratification conditions on barotropic tidal transport. Cont Shelf Res 47(15):107–188. doi:10.1016/j.csr.2012.07.003 CrossRefGoogle Scholar
  54. Müller M, Arbic BK, Mitrovica J (2011) Secular trends in ocean tides: observations and model results. J Geophys Res 116(C05):013. doi:10.1029/2010JC006387 Google Scholar
  55. National Research Council (2012) Sea-level rise for the coasts of California, Oregon, and Washington: past, present, and future. National Academies Press, WashingtonGoogle Scholar
  56. Nerem RS, Chambers DP, Leuliette EW, Mitchum GT, Giese BS (1999) Variations in global mean sea level associated with the 1997–1998 ENSO event: implications for measuring long term sea level change. Geophys Res Lett 26(19):3005–3008. doi:10.1029/1999GL002311 CrossRefGoogle Scholar
  57. Nicholls RJ, Cavenaze A (2010) Sea level rise and its impacts on coastal zones. Science 328:1517–1520. doi:10.1126/science.1185782, 5985 ppCrossRefGoogle Scholar
  58. Parker B (1991) Tidal hydrodynamics. Wiley, NY, 1–883, ISBN: 978-0471514985Google Scholar
  59. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28(8):929–937CrossRefGoogle Scholar
  60. Pickering MD, Wells NC, Horsburgh KJ, Green JAM (2012) The impact of future sea-level rise on the European Shelf tides. Cont Shelf Res 35:1–15. doi:10.1016/j.csr.2011.11.011 CrossRefGoogle Scholar
  61. Pugh DT (1987) Tides, surges and mean sea-level: a handbook for engineers and scientists. Wiley, Chichester, 472 pp, ISBN: 978-0471915058Google Scholar
  62. Pugh DT (2004) Changing sea levels. Effects of tides, weather and climate. Cambridge University Press, 280 pp, ISBN: 978-0521532181Google Scholar
  63. Rainville L, Pinkel R (2006) Propagation of low-mode internal waves through the ocean. J Phys Oceangr 36(6):1220–1236. doi:10.1175/JPO2882.1 CrossRefGoogle Scholar
  64. Ray RD (2001) Comparisons of global analyses and station observations of the S2 barometric tide. Geophys Res Lett 28:21–24. doi:10.1016/S1364-6826(01)00018-9 CrossRefGoogle Scholar
  65. Ray RD (2006) Secular changes of the M2 tide in the Gulf of Maine. Cont Shelf Res 26(3):422–427. doi:10.1016/j.csr.2005.12.005 CrossRefGoogle Scholar
  66. Ray RD (2009) Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophys Res Lett 36, L19601. doi:10.1029/2009GL040217 CrossRefGoogle Scholar
  67. Ray RD, Mitchum GT (1996) Surface manifestations of internal tides generated near Hawaii. Geophys Res Lett 23:2101–2104. doi:10.1029/96GL02050 CrossRefGoogle Scholar
  68. Ray RD, Mitchum GT (1997) Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Prog Oceanogr 40:135–162. doi:10.1016/S0079-6611(97)00025-6 CrossRefGoogle Scholar
  69. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  70. Simmons WF (1969) A variational method for weak resonant wave interactions, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 309(1499):551–557. doi:10.1098/rspa.1969.0056
  71. Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Clim 23:4429–4437. doi:10.1175/2010JCLI3519.1 CrossRefGoogle Scholar
  72. Weiland J, Wilhelmsson H (1977) Coherent non-linear interaction of waves in plasmas. Pergamon Press, ISBN: 978-0080209647Google Scholar
  73. White WB, Cayan DR, Dettinger MD, Auad G (2001) Sources of global warming in the upper ocean temperature during El Nino. J Geophys Res 106(C3):4349–4367. doi:10.1029/1999JC000130 CrossRefGoogle Scholar
  74. Wolanski E (1994) Physical oceanographic processes of the Great Barrier Reef. CRC Press, 208 pp, ISBN: 0849380472Google Scholar
  75. Woodworth PL (2010) A survey of recent changes in the main components of the ocean tide. Cont Shelf Res 30(15):1680–1691. doi:10.1016/j.csr.2010.07.002 CrossRefGoogle Scholar
  76. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data-analysis method. Adv Adapt Data Anal 1(1):1–41CrossRefGoogle Scholar
  77. Xie XH, Chen GY, Shang XD, Fang WD (2008) Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea. Geophys Res Lett 35, L13604. doi:10.1029/2008GL034179 CrossRefGoogle Scholar
  78. Zakharov VE, Manakov SV (1973) Resonant interaction of wave packets in nonlinear media. Sov Phys JTEP Lett 18:243–247Google Scholar
  79. Zaron E, Jay DA (2014) An analysis of secular changes in tides at open-ocean sites in the Pacific. Accepted by J Phys OceanogrGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Adam T. Devlin
    • 1
  • David A. Jay
    • 1
  • Stefan A. Talke
    • 1
  • Edward Zaron
    • 1
  1. 1.Civil & Environmental EngineeringPortland State UniversityPortlandUSA

Personalised recommendations