Ocean Dynamics

, Volume 64, Issue 6, pp 847–862 | Cite as

Evaluation of nearshore wave models in steep reef environments

Part of the following topical collections:
  1. Topical Collection on the 7th International Conference on Coastal Dynamics in Arcachon, France 24-28 June 2013


To provide coastal engineers and scientists with a quantitative evaluation of nearshore numerical wave models in reef environments, we review and compare three commonly used models with detailed laboratory observations. These models are the following: (1) SWASH (Simulating WAves till SHore) (Zijlema et al. 2011), a phase-resolving nonlinear shallow-water wave model with added nonhydrostatic terms; (2) SWAN (Simulating WAve Nearshore) (Booij et al. 1999), a phase-averaged spectral wave model; and (3) XBeach (Roelvink et al. 2009), a coupled phase-averaged spectral wave model (applied to modeling sea-swell waves) and a nonlinear shallow-water model (applied to modeling infragravity waves). A quantitative assessment was made of each model’s ability to predict sea-swell (SS) wave height, infragravity (IG) wave height, wave spectra, and wave setup (\( \overline{\eta} \)) at five locations across the laboratory fringing reef profile of Demirbilek et al. (2007). Simulations were performed with the “recommended” empirical coefficients as documented for each model, and then the key wave-breaking parameter for each model (α in SWASH and γ in both SWAN and XBeach) was optimized to most accurately reproduce the observations. SWASH, SWAN, and XBeach were found to be capable of predicting SS wave height variations across the steep fringing reef profile with reasonable accuracy using the default coefficients. Nevertheless, tuning of the key wave-breaking parameter improved the accuracy of each model’s predictions. SWASH and XBeach were also able to predict IG wave height and spectral transformation. Although SWAN was capable of modeling the SS wave height, in its current form, it was not capable of modeling the spectral transformation into lower frequencies, as evident in the underprediction of the low-frequency waves.


Wave-breaking Coral reefs Breaking parameter Nonlinear waves Steep slope Wave model Wave dissipation 


  1. Apotsos A, Raubenheimer B, Elgar S, Guza RT, Smith JA (2007) Effects of wave rollers and bottom stress on wave setup. J Geophys Res 112 (C2). doi:10.1029/2006jc003549
  2. Apotsos A, Raubenheimer B, Elgar S, Guza RT (2008) Testing and calibrating parametric wave transformation models on natural beaches. Coast Eng 55(3):224–235. doi:10.1016/j.coastaleng.2007.10.002 CrossRefGoogle Scholar
  3. Baldock T, Holmes P, Bunker S, Van Weert P (1998) Cross-shore hydrodynamics within an unsaturated surf zone. Coast Eng 34(3–4):173–196CrossRefGoogle Scholar
  4. Battjes JA, Janssen JPFM (1978) Energy loss and set-up due to breaking of random waves. Proc 16th Int Conf Coast Eng, ASCE:569-587Google Scholar
  5. Battjes JA, Stive MJF (1985) Calibration and verification of a dissipation model for random breaking waves. J Geophys Res Oceans 90(C5):9159–9167. doi:10.1029/JC090iC05p09159 CrossRefGoogle Scholar
  6. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions 1. Model description and validation. J Geophys Res C Oceans 104(C4):7649–7666CrossRefGoogle Scholar
  7. Cavaleri L, Alves JHGM, Ardhuin F, Babanin A, Banner M, Belibassakis K, Benoit M, Donelan M, Groeneweg J, Herbers THC, Hwang P, Janssen PAEM, Janssen T, Lavrenov IV, Magne R, Monbaliu J, Onorato M, Polnikov V, Resio D, Rogers WE, Sheremet A, McKee Smith J, Tolman HL, van Vledder G, Wolf J, Young I (2007) Wave modelling—the state of the art. Prog Oceanogr 75(4):603–674. doi:10.1016/j.pocean.2007.05.005 CrossRefGoogle Scholar
  8. Cienfuegos R, Barthélemy E, Bonneton P (2010) Wave-breaking model for Boussinesq-type equations including roller effects in the mass conservation equation. J Waterw Port Coast Ocean Eng 136(1):10–26. doi:10.1061/(asce)ww.1943-5460.0000022 CrossRefGoogle Scholar
  9. Demirbilek Z, Nwogu OG (2007) Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report. Data Report ERDC/CHL TR-07-12, Coastal and Hydraulics LaboratoryGoogle Scholar
  10. Demirbilek Z, Nwogu OG, Ward DL (2007) Laboratory Study of Wind Effect on Runup over Fringing Reefs, Report 1: Data Report. ERDC/CHL TR-07-4, Coastal and Hydraulics LaboratoryGoogle Scholar
  11. Feddersen F, Gallagher EL, Guza RT, Elgar S (2003) The drag coefficient, bottom roughness, and wave-breaking in the nearshore. Coast Eng 48(3):189–195. doi:10.1016/s0378-3839(03)00026-7 CrossRefGoogle Scholar
  12. Filipot J-F, Cheung KF (2012) Spectral wave modeling in fringing reef environments. Coast Eng 67:67–79. doi:10.1016/j.coastaleng.2012.04.005 CrossRefGoogle Scholar
  13. Gourlay MR (1994) Wave transformation on a coral reef. Coast Eng 23(1–2):17–42. doi:10.1016/0378-3839(94)90013-2 CrossRefGoogle Scholar
  14. Gourlay MR, Colleter G (2005) Wave-generated flow on coral reefs—an analysis for two-dimensional horizontal reef-tops with steep faces. Coast Eng 52(4):353–387. doi:10.1016/j.coastaleng.2004.11.007 CrossRefGoogle Scholar
  15. Hasselmann DE, Dunckel M, Ewing JA (1980) Directional wave spectra observed during JONSWAP 1973. J Phys Oceanogr 10(8):1264–1280. doi:10.1175/1520-0485(1980)010<1264:dwsodj>2.0.co;2 CrossRefGoogle Scholar
  16. Hearn CJ (1999) Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J Geophys Res 104(C12):30007–30019. doi:10.1029/1999jc900262 CrossRefGoogle Scholar
  17. Hoeke R, Storlazzi C, Ridd P (2011) Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction. J Geophys Res-Oceans 116. doi:10.1029/2010jc006170
  18. Janssen TT, Battjes JA (2007) A note on wave energy dissipation over steep beaches. Coast Eng 54(9):711–716. doi:10.1016/j.coastaleng.2007.05.006 CrossRefGoogle Scholar
  19. Lowe RJ, Falter JL, Bandet MD, Pawlak G, Atkinson MJ, Monismith SG, Koseff JR (2005) Spectral wave dissipation over a barrier reef. J Geophys Res 110(C4), C04001. doi:10.1029/2004jc002711 Google Scholar
  20. Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009) A numerical study of circulation in a coastal reef-lagoon system. J Geophys Res 114(C6), C06022. doi:10.1029/2008jc005081 Google Scholar
  21. Madsen PA, Sørensen OR, Schäffer HA (1997) Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves. Coast Eng 32(4):255–287. doi:10.1016/s0378-3839(97)00028-8 CrossRefGoogle Scholar
  22. Mansard EPD, Funke ER (1980) Measurement of incident and reflected spectra using a least squares method. 17th International Conference on Coastal Engineering, Sydney, Australia:pp. 95–96Google Scholar
  23. Massel SR, Gourlay MR (2000) On the modelling of wave breaking and set-up on coral reefs. Coast Eng 39(1):1–27. doi:10.1016/s0378-3839(99)00052-6 CrossRefGoogle Scholar
  24. Murphy AH, Epstein ES (1989) Skill scores and correlation coefficients in model verification. Mon Weather Rev 117(3):572–582. doi:10.1175/1520-0493(1989)117<0572:ssacci>2.0.co;2 CrossRefGoogle Scholar
  25. Nairn RB (1990) Prediction of cross-shore sediment transport and beach profile evolution. Imperial College, LondonGoogle Scholar
  26. Nelson RC (1994) Depth limited design wave heights in very flat regions. Coast Eng 23(1–2):43–59. doi:10.1016/0378-3839(94)90014-0 CrossRefGoogle Scholar
  27. Pomeroy A, Lowe R, Symonds G, Van Dongeren A, Moore C (2012) The dynamics of infragravity wave transformation over a fringing reef. J Geophys Res-Oceans 117. doi:10.1029/2012jc008310
  28. Reniers AJHM, Battjes JA (1997) A laboratory study of longshore currents over barred and non-barred beaches. Coast Eng 30(1–2):1–21. doi:10.1016/S0378-3839(96)00033-6 CrossRefGoogle Scholar
  29. Roelvink JA (1993) Dissipation in random wave groups incident on a beach. Coast Eng 19(1–2):127–150. doi:10.1016/0378-3839(93)90021-y CrossRefGoogle Scholar
  30. Roelvink D, Reniers A, van Dongeren A, van Thiel de Vries J, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56(11–12):1133–1152. doi:10.1016/j.coastaleng.2009.08.006 CrossRefGoogle Scholar
  31. Ruessink BG, Walstra DJR, Southgate HN (2003) Calibration and verification of a parametric wave model on barred beaches. Coast Eng 48(3):139–149. doi:10.1016/S0378-3839(03)00023-1 CrossRefGoogle Scholar
  32. Schäffer HA, Madsen PA, Deigaard R (1993) A Boussinesq model for waves breaking in shallow water. Coast Eng 20(3–4):185–202. doi:10.1016/0378-3839(93)90001-o CrossRefGoogle Scholar
  33. Sheremet A, Kaihatu JM, Su SF, Smith ER, Smith JM (2011) Modeling of nonlinear wave propagation over fringing reefs. Coast Eng 58(12):1125–1137. doi:10.1016/j.coastaleng.2011.06.007 CrossRefGoogle Scholar
  34. Smit P, Zijlema M, Stelling G (2013) Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coast Eng 76:1–16. doi:10.1016/j.coastaleng.2013.01.008 CrossRefGoogle Scholar
  35. Storlazzi CD, Elias E, Field ME, Presto MK (2011) Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs 30:83–96. doi:10.1007/s00338-011-0723-9 CrossRefGoogle Scholar
  36. Svendsen IA (1984) Mass flux and undertow in a surf zone. Coast Eng 8(4):347–365. doi:10.1016/0378-3839(84)90030-9 CrossRefGoogle Scholar
  37. Symonds G, Black KP, Young IR (1995) Wave-driven flow over shallow reefs. J Geophys Res 100(C2):2639–2648. doi:10.1029/94jc02736 CrossRefGoogle Scholar
  38. Ting FCK, Kirby JT (1994) Observation of undertow and turbulence in a laboratory surf zone. Coast Eng 24(1–2):51–80. doi:10.1016/0378-3839(94)90026-4 CrossRefGoogle Scholar
  39. Torres-Freyermuth A, Marino-Tapia I, Coronado C, Salles P, Medellin G, Pedrozo-Acuna A, Silva R, Candela J, Iglesias-Prieto R (2012) Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon. Nat Hazard Earth Syst 12(12):3765–3773. doi:10.5194/nhess-12-3765-2012 CrossRefGoogle Scholar
  40. van der Westhuysen AJ (2010) Modeling of depth-induced wave breaking under finite depth wave growth conditions. J Geophys Res Oceans 115(C1), C01008. doi:10.1029/2009jc005433 Google Scholar
  41. Van Dongeren A, Lowe R, Pomeroy A, Trang DM, Roelvink D, Symonds G, Ranasinghe R (2013) Numerical modeling of low-frequency wave dynamics over a fringing coral reef. Coast Eng 73:178–190. doi:10.1016/j.coastaleng.2012.11.004 CrossRefGoogle Scholar
  42. Yao Y, Huang Z, Monismith SG, Lo EYM (2012) Characteristics of Monochromatic Waves Breaking over Fringing Reefs. J Coast Res:94-104. doi:10.2112/jcoastres-d-12-00021.1
  43. Zijlema M (2012) Modelling wave transformation across a fringing reef using SWASH. Coast Eng Proc 1(33) (currents.26). doi:10.9753/icce.v33.currents.26
  44. Zijlema M, Stelling GS (2008) Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coast Eng 55(10):780–790. doi:10.1016/j.coastaleng.2008.02.020 CrossRefGoogle Scholar
  45. Zijlema M, Stelling G, Smit P (2011) SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast Eng 58(10):992–1012. doi:10.1016/j.coastaleng.2011.05.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Earth and EnvironmentUniversity of Western AustraliaCrawleyAustralia
  2. 2.The Oceans InstituteUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations