Ocean Dynamics

, Volume 64, Issue 5, pp 633–642 | Cite as

Pressure effects on regional mean sea level trends in the German Bight in the twenty-first century

  • Frauke AlbrechtEmail author
  • Ralf Weisse


The effect of large-scale atmospheric pressure changes on regional mean sea level projections in the German Bight in the twenty-first century are considered. A developed statistical model is applied to climate model data of sea level pressure for the twenty-first century to assess the potential contribution of large-scale atmospheric changes to future sea level changes in the German Bight. Using 78 experiments, an ensemble mean of 1.4-cm rise in regional mean sea level is estimated until the end of the twenty-first century. Changes are somewhat higher for realisations of the special report on emission scenarios (SRES) A1B and A2, but generally do not exceed a few centimeters. This is considerably smaller than the changes expected from steric and self-gravitational effects. Large-scale changes in sea level pressure are thus not expected to provide a substantial contribution to twenty-first century sea level changes in the German Bight.


Mean sea level German Bight Pressure effects Future sea level trends 



We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, US. Department of Energy. This work is a contribution to the ‘Helmholtz Climate Initiative REKLIM’ (Regional Climate Change), a joint research project of the Helmholtz Association of German research centres (HGF).


  1. Albrecht F, Wahl T, Jensen J, Weisse R (2011) Determining sea level change in the German Bight. Ocean Dyn 61:2037–2050. doi: 10.1007/s10236-011-0462-z CrossRefGoogle Scholar
  2. Albrecht F, Weisse R (2012) Pressure effects on past regional sea level trends and variability in the German Bight. Ocean Dyn 62:1169–1186. doi: 10.1007/s10236-012-0557-1 CrossRefGoogle Scholar
  3. Deuflhard P., Hohmann A. (1993) Numerische Mathematik I, Eine algorithmisch orientierte Einführung. 2. Auflage, Walter de Gruyter, BerlinGoogle Scholar
  4. Gönnert G, Jensen J, von Storch H, Thumm S, Wahl T, Weisse R (2009) Der Meeresspiegelanstieg Ursachen, Tendenzen und Risikobewertung. Die Küste 76:225–256Google Scholar
  5. Holgate S., Jevrejeva S., Woodworth P., Brewer S. (2007) A semi-empirical approach tp projecting future sea-level rise. Science 317. doi: 10.1126/science.1140942
  6. Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burgers JHB (2008) Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamicy and gravity changes induced by ice melt. Clim Chang 91:351–374. doi: 10.1007/s10584-008-9442-9 CrossRefGoogle Scholar
  7. Katsman CA, Sterl A, Beersma JJ, van den Brink HW, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Oppenheimer M, Plag H-P, Ridley J, von Storch H, Vaughan DG, Vellinga P, Vermeersen LLA, van de Wal RSW, Weisse R (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example. Clim Chang 109:617–645. doi: 10.1007/s10584-011-0037-5 CrossRefGoogle Scholar
  8. Lowe JA, Howard TP, Pardaens A, Tinker J, Holt J, Wakelin S, Milne G, Leake J, Wolf J, Horsburgh K, Reeder T, Jenkins G, Ridley J, Dye S, Bradley S (2009) UK Climate Projections science report: marine and coastal projections. Met Office Hadley Centre, Exeter, UKGoogle Scholar
  9. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JR, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC, Averyt KB (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  10. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007a) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  11. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370. doi: 10.1126/science.1135456 CrossRefGoogle Scholar
  12. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate?Bull Am Meteorol Soc 89:303–311. doi: 10.1175/BAMS-89-3-303 CrossRefGoogle Scholar
  13. Schmidt T, Johanson S, Thejll P (2007) A semi-empirical approach to projecting future sea-level rise. Science 317. doi: 10.1126/science.1143286
  14. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1191–1209. doi: 10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  15. Tsimplis MN, Woolf DK, Osborn TJ, Wakelin S, Wolf J, Flather R, Shaw AGP, Woodworth P, Challenor P, Blackman D, Pert F, Yan Z, Jevrejeva S (2005) Towards a vulnerability assessment of the UK and Northern European coasts: the role of regional climate variability. Phil Trans R Soc A 363:1329–1358. doi: 10.1098/rsta.2005.1571 CrossRefGoogle Scholar
  16. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106:21527–21532. doi:10.1073/pnas.0907765106CrossRefGoogle Scholar
  17. von Storch H, Zwiers F (1998) Statistical analysis in climate research. Cambridge University press, CambridgeGoogle Scholar
  18. von Storch H, Zorita E, González-Rouco JF (2008) Relationship between global mean sea-level and global mean temperature and heat flux in a climate simulation of the past millennium. Ocean Dyn 58:227–236. doi: 10.1007/s10236-008-0142-9 CrossRefGoogle Scholar
  19. von Storch H, Zwiers F (2013) Testing ensembles of climate change scenarios for statistical significance. Clim Chang 117:1–9. doi: 10.1007/s10584-012-0551-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Climate and Resilience ResearchUniversity of ConcepciónConcepciónChile
  2. 2.Helmholtz-Zentrum GeesthachtInstitute for Coastal ResearchGeesthachtGermany

Personalised recommendations