Ocean Dynamics

, Volume 64, Issue 3, pp 459–469 | Cite as

Variations of tidally driven three-layer residual circulation in fjords

  • Arnoldo Valle-LevinsonEmail author
  • Mario A. Caceres
  • Oscar Pizarro
Part of the following topical collections:
  1. Topical Collection on Physics of Estuaries and Coastal Seas 2012


Residual, or tidally averaged, circulation in fjords is generally assumed to be density driven and two layered. This circulation consists of a thin surface layer of outflow and a thick bottom layer of sluggish inflow. However, development of different vertical structures in residual circulation in fjords can arise from wind, remote, and tidal forcing that may modify the two-layer circulation. Particularly, theoretical results of tidal residual flows in homogeneous semienclosed basins indicate that their vertical structure is determined by the dynamical depth of the system. This dynamical depth can be considered as the ratio between the water column depth and the depth of frictional influence in an oscillatory flow (inverse of Stokes number). When the frictional depth occupies the entire water column, the tidal residual flow is one layered as in shallow basins. But when the frictional depth is only a small portion of the water column (>6 times smaller), the tidal residual is three layered. In relatively deep fjords (say deeper than 100 m), where frictional depths typically occupy a small portion of the water column, the tidal residual flow is expected to be three layered. Ample observational evidence presented here shows a three-layered exchange flow structure in fjords. On the basis of observational and theoretical evidence, it is proposed that the water exchange structure in deep fjords (more than six frictional layers deep, or inverse Stokes number >6) is tidally driven and is three layered. The tidally driven three-layer structure of residual flows could be regarded in some cases as the fundamental structure. However, this structure will only be observed sporadically as it will be masked by wind forcing, remote forcing from the ocean, and freshwater pulses.


Fjord circulation Three-layer flows Tidal residual flow 



Current data from moorings deployed in 2006 at Reloncavi Fjord were obtained under project CONA-C12F 06–02 supported by National Oceanographic Committee of Chile. A.VL acknowledges support from NSF project 0825876 and a Fellowship under Program of Short Stays 801100008 supported by CONICYT (Chile), to analyze some of the data at Universidad de Valparaiso. A.VL also acknowledges support from the Fulbright Commission and CSIC, Spain, which allowed completion of this document. Comments from two anonymous reviewers helped clarify several aspects of this presentation.


  1. Arneborg L (2004) Turnover times for the water above sill level in Gullmar Fjord. Cont Shelf Res 24:443–460CrossRefGoogle Scholar
  2. Cáceres M, Valle-Levinson A, Sepulveda H, Holderied K (2002) Transverse variability of flow and density in a Chilean fjord. Cont Shelf Res 22:1683–1698CrossRefGoogle Scholar
  3. Cáceres M, Valle-Levinson A, Fierro J, Valenzuela C, Castillo M (2010a) Variabilidad transversal del flujo y de la densidad en la boca del Fiordo Aysén. Ciencia y Tecnología del Mar 33(1):5–15Google Scholar
  4. Cáceres M, Valle-Levinson A, Belmar J, Bello M, Castillo M (2010b) Variabilidad transversal del flujo y salinidad en Paso Nao. Ciencia y Tecnología del Mar 33(2):45–58Google Scholar
  5. Castillo M, Bello M, Reyes H, Guerrero Y (2006) Patrones de corrientes y distribución vertical de temperatura y salinidad en la entrada oceánica del Canal Darwin en invierno y primavera de 2002. Ciencia y Tecnología del Mar 29(2):5–21Google Scholar
  6. Castillo M, Pizarro O, Cifuentes U, Ramirez N, Djurfeldt L (2012) Subtidal dynamics in a deep fjord of southern Chile. Cont Shelf Res 49:73–89CrossRefGoogle Scholar
  7. Chao S-Y, Boicourt WC, Wang HVC (1996) Three-layered circulation in reverse estuaries. Cont Shelf Res 16(10):1379–1397CrossRefGoogle Scholar
  8. Dyer, K. R. (1997), Estuaries, a physical introduction 2nd Edition, Wiley, 195 pp.Google Scholar
  9. Geyer WR, Cannon G (1982) Sill processes related to deep water renewal in a fjord. J Geophys Res 87:7985–7996CrossRefGoogle Scholar
  10. Huijts KMH, Schuttelaars HM, de Swart HE, Friedrichs CT (2009) Analytical study of the transverse distribution of along-channel and transverse residual flows in tidal estuaries. Cont Shelf Res 29:89–100. doi: 10.1016/j.csr. 2007.09.007 CrossRefGoogle Scholar
  11. Ianniello J (1977) Tidally induced residual currents in estuaries of constant breadth and depth. J Mar Res 35(4):755–786Google Scholar
  12. Joyce T (1989) On in situ “calibration” of shipboard ADCPs. Journal of Atmopheric and Oceanic Technology 6:169–172CrossRefGoogle Scholar
  13. Klinck JM, O’Brien JJ, Svendsen H (1981) A simple model of fjord and coastal circulation interaction. J Phys Oceanogr 11:1612–1626CrossRefGoogle Scholar
  14. Li C, O’Donnell J (2005) The effect of channel length on the residual circulation in tidally dominated channels. J Phys Oceanogr 35:1826–1840CrossRefGoogle Scholar
  15. Officer CB (1976) Physical oceanography of estuaries. Wiley, New York, 465 ppGoogle Scholar
  16. Rippeth TP, Simpson JH (1998) Diurnal signals in vertical motions on the Hebridean Shelf. Limnol Oceanogr 43:1690–1696CrossRefGoogle Scholar
  17. Stigebrandt A (2012) Hydrodynamics and circulation of fjords. In: Bengtsson et al (eds) Encyclopedia of Lakes and Reservoirs. Springer, Netherlands, pp 327–244Google Scholar
  18. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammil MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major, East Greenland glacial fjord. Nat Geosci 3:182–186CrossRefGoogle Scholar
  19. Stucchi DJ, Bell WH (1980) Shelf-fjord exchange on the west coast of Vancouver Island. Trans Amer Geophys Union 61:280Google Scholar
  20. Svendsen H, Thompson RORY (1978) Wind-driven circulation in a fjord. J Phys Oceanogr 8:703–712CrossRefGoogle Scholar
  21. Thomson RE, Mihály SF, Kulikov EA (2007) Estuarine versus transient flow regimes in Juan de Fuca Strait. J Geophys Res 112:C09022. doi: 10.1029/2006JC003925 Google Scholar
  22. Trump CL, Marmorino G (1997) Calibrating a gyrocompass using ADCP and DGPS data. J Atmos Ocean Technol 14:211–214CrossRefGoogle Scholar
  23. Valle-Levinson A (2008) Density-driven exchange flow in terms of the Kelvin and Ekman numbers. J Geophys Res 113:C04001. doi: 10.1029/2007JC004144 Google Scholar
  24. Valle-Levinson A, Atkinson LP (1999) Spatial gradients in the flow over an estuarine channel. Estuaries 22(2A):179–193Google Scholar
  25. Valle-Levinson A, Sarkar N, Sanay R, Soto D, León J (2007) Spatial structure of hydrography and flow in a Chilean Fjord, Estuario Reloncaví. Estuar Coasts 30(1):113–126Google Scholar
  26. Valle-Levinson A, Jara F, Molinet C, Soto D (2001) Observations of intratidal variability of exchange flows cver a sill/contraction combination in a Chilean fjord. J Geophys Res 106(C4):7,051–7,064CrossRefGoogle Scholar
  27. Winant CD (2008) Three-dimensional residual tidal circulation in an elongated, rotating basin. J Phys Oceanogr 38:1278–1295CrossRefGoogle Scholar
  28. Wong K, Valle-Levinson A (2002) On the relative importance of the remote and local wind effects on the subtidal exchange at the entrance to the Chesapeake Bay. J Mar Res 60:477–498CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arnoldo Valle-Levinson
    • 1
    Email author
  • Mario A. Caceres
    • 2
  • Oscar Pizarro
    • 3
  1. 1.University of FloridaGainesvilleUSA
  2. 2.Facultad de Ciencias del MarUniversidad de ValparaísoViña del MarChile
  3. 3.Universidad de ConcepciónConcepciónChile

Personalised recommendations